R语言【dplyr】——case_when()是一般向量化的 if-else(),该函数允许您将多个 if_else() 语句矢量化

本文主要是介绍R语言【dplyr】——case_when()是一般向量化的 if-else(),该函数允许您将多个 if_else() 语句矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Package dplyr version 1.1.4


Parameters

case_when(..., .default = NULL, .ptype = NULL, .size = NULL)

参数【...】<dynamic-dots> 一组两面公式(two-sided formulas)。

  • 公式左边(left hand side,LHS)决定了哪些值符合这种情况。
  • 公式右边(right hand side,RHS)提供了替换值。
  • LHS 输入的结果必须是逻辑向量。
  • RHS 输入将被强制转换为通用类型。
  • 所有输入的数据都将被回收利用,恢复到其平常大小。尽管如此,我们还是鼓励所有 LHS 输入的大小相同。
  • 循环主要适用于 RHS 输入,在这种情况下,您可能会提供一个大小为 1 的输入,它将被循环为 LHS 输入的大小。
  • 输入 NULL 将被忽略。

参数【.default】:当所有 LHS 输入返回 FALSE NA 时使用的值。

  • 参数【.default】的大小必须为 1 或与参数【...】计算出的通用大小相同。
  • 参数【.default】与 RHS 输入一起参与通用类型的计算。
  • LHS 条件中的 NA 值将被视为 FALSE,这意味着这些位置的结果将被分配为参数【.default】值。要以不同的方式处理条件中的缺失值,必须在它们落入参数【.default】之前明确地用另一个条件来捕获它们。这通常涉及 is.na(x) ~ value 的一些变体,以适应您对 case_when() 的使用。
  • 如果为 NULL(默认值),将使用缺失值。

参数【.ptype】:一个可选的原型,用于声明所需的输出类型。如果提供,将覆盖 RHS 输入的通用类型。

参数【.size】:一个可选的大小,用于声明所需的输出大小。如果提供,它将覆盖从参数【...】计算出的通用大小。


Value

一个向量,其大小与参数【...】中输入值计算出的共同大小相同,类型与参数【...】中 RHS 输入值的共同类型相同。


Examples

1. 最简单的例子

x <- 1:70
case_when(x %% 35 == 0 ~ "fizz buzz",x %% 5 == 0 ~ "fizz",x %% 7 == 0 ~ "buzz",.default = as.character(x)
)
 [1] "1"         "2"         "3"         "4"         "fizz"      "6"        [7] "buzz"      "8"         "9"         "fizz"      "11"        "12"       
[13] "13"        "buzz"      "fizz"      "16"        "17"        "18"       
[19] "19"        "fizz"      "buzz"      "22"        "23"        "24"       
[25] "fizz"      "26"        "27"        "buzz"      "29"        "fizz"     
[31] "31"        "32"        "33"        "34"        "fizz buzz" "36"       
[37] "37"        "38"        "39"        "fizz"      "41"        "buzz"     
[43] "43"        "44"        "fizz"      "46"        "47"        "48"       
[49] "buzz"      "fizz"      "51"        "52"        "53"        "54"       
[55] "fizz"      "buzz"      "57"        "58"        "59"        "fizz"     
[61] "61"        "62"        "buzz"      "64"        "fizz"      "66"       
[67] "67"        "68"        "69"        "fizz buzz"

2. 与 if 语句一样,条件会按顺序进行检测,所以您应该将条件按照最严格到最宽松排列,否则会出现以下情况

x <- 1:70
case_when(x %%  5 == 0 ~ "fizz",x %%  7 == 0 ~ "buzz",x %% 35 == 0 ~ "fizz buzz",.default = as.character(x)
)
 [1] "1"    "2"    "3"    "4"    "fizz" "6"    "buzz" "8"    "9"   
[10] "fizz" "11"   "12"   "13"   "buzz" "fizz" "16"   "17"   "18"  
[19] "19"   "fizz" "buzz" "22"   "23"   "24"   "fizz" "26"   "27"  
[28] "buzz" "29"   "fizz" "31"   "32"   "33"   "34"   "fizz" "36"  
[37] "37"   "38"   "39"   "fizz" "41"   "buzz" "43"   "44"   "fizz"
[46] "46"   "47"   "48"   "buzz" "fizz" "51"   "52"   "53"   "54"  
[55] "fizz" "buzz" "57"   "58"   "59"   "fizz" "61"   "62"   "buzz"
[64] "64"   "fizz" "66"   "67"   "68"   "69"   "fizz"

3. 如果元素不符合任何条件,那么就会触发参数【.default】,默认为NA

x <- 1:70
case_when(x %% 35 == 0 ~ "fizz buzz",x %% 5 == 0 ~ "fizz",x %% 7 == 0 ~ "buzz",
)
 [1] NA          NA          NA          NA          "fizz"     [6] NA          "buzz"      NA          NA          "fizz"     
[11] NA          NA          NA          "buzz"      "fizz"     
[16] NA          NA          NA          NA          "fizz"     
[21] "buzz"      NA          NA          NA          "fizz"     
[26] NA          NA          "buzz"      NA          "fizz"     
[31] NA          NA          NA          NA          "fizz buzz"
[36] NA          NA          NA          NA          "fizz"     
[41] NA          "buzz"      NA          NA          "fizz"     
[46] NA          NA          NA          "buzz"      "fizz"     
[51] NA          NA          NA          NA          "fizz"     
[56] "buzz"      NA          NA          NA          "fizz"     
[61] NA          NA          "buzz"      NA          "fizz"     
[66] NA          NA          NA          NA          "fizz buzz"

4. 请注意,LHS 上的 NA 值将被视为 FALSE,并触发参数【.default】。如果要使用不同的值,必须明确处理它们。处理缺失值的具体方法取决于您使用的 LHS 条件集

x <- 1:70
x[2:4] <- NA_real_
case_when(x %% 35 == 0 ~ "fizz buzz",x %% 5 == 0 ~ "fizz",x %% 7 == 0 ~ "buzz",is.na(x) ~ "nope",.default = as.character(x)
)
 [1] "1"         "nope"      "nope"      "nope"      "fizz"     [6] "6"         "buzz"      "8"         "9"         "fizz"     
[11] "11"        "12"        "13"        "buzz"      "fizz"     
[16] "16"        "17"        "18"        "19"        "fizz"     
[21] "buzz"      "22"        "23"        "24"        "fizz"     
[26] "26"        "27"        "buzz"      "29"        "fizz"     
[31] "31"        "32"        "33"        "34"        "fizz buzz"
[36] "36"        "37"        "38"        "39"        "fizz"     
[41] "41"        "buzz"      "43"        "44"        "fizz"     
[46] "46"        "47"        "48"        "buzz"      "fizz"     
[51] "51"        "52"        "53"        "54"        "fizz"     
[56] "buzz"      "57"        "58"        "59"        "fizz"     
[61] "61"        "62"        "buzz"      "64"        "fizz"     
[66] "66"        "67"        "68"        "69"        "fizz buzz"

5. case_when() 对所有 RHS 表达式进行求值,然后通过提取所选(通过 LHS 表达式)部分来构建结果

y <- seq(-2, 2, by = .5)
case_when(y >= 0 ~ sqrt(y),.default = y
)
[1] -2.0000000 -1.5000000 -1.0000000 -0.5000000  0.0000000  0.7071068
[7]  1.0000000  1.2247449  1.4142136
Warning message:
In sqrt(y) : 产生了NaNs

6. 当你想创建一个依赖于现有变量复杂组合的新变量时,case_when() mutate() 中特别有用

starwars
# A tibble: 87 × 14name       height  mass hair_color skin_color eye_color birth_year<chr>       <int> <dbl> <chr>      <chr>      <chr>          <dbl>1 Luke Skyw…    172    77 blond      fair       blue            19  2 C-3PO         167    75 NA         gold       yellow         112  3 R2-D2          96    32 NA         white, bl… red             33  4 Darth Vad…    202   136 none       white      yellow          41.95 Leia Orga…    150    49 brown      light      brown           19  6 Owen Lars     178   120 brown, gr… light      blue            52  7 Beru Whit…    165    75 brown      light      blue            47  8 R5-D4          97    32 NA         white, red red             NA  9 Biggs Dar…    183    84 black      light      brown           24  
10 Obi-Wan K…    182    77 auburn, w… fair       blue-gray       57  
# ℹ 77 more rows
# ℹ 7 more variables: sex <chr>, gender <chr>, homeworld <chr>,
#   species <chr>, films <list>, vehicles <list>, starships <list>
# ℹ Use `print(n = ...)` to see more rows
starwars %>%select(name:mass, gender, species) %>%mutate(type = case_when(height > 200 | mass > 200 ~ "large",species == "Droid" ~ "robot",.default = "other"))
# A tibble: 87 × 6name               height  mass gender    species type <chr>               <int> <dbl> <chr>     <chr>   <chr>1 Luke Skywalker        172    77 masculine Human   other2 C-3PO                 167    75 masculine Droid   robot3 R2-D2                  96    32 masculine Droid   robot4 Darth Vader           202   136 masculine Human   large5 Leia Organa           150    49 feminine  Human   other6 Owen Lars             178   120 masculine Human   other7 Beru Whitesun Lars    165    75 feminine  Human   other8 R5-D4                  97    32 masculine Droid   robot9 Biggs Darklighter     183    84 masculine Human   other
10 Obi-Wan Kenobi        182    77 masculine Human   other
# ℹ 77 more rows
# ℹ Use `print(n = ...)` to see more rows

7. case_when() 不是一个整洁的条件函数。如果想重复使用相同的模式,请在自定义函数中调用 case_when()

case_character_type <- function(height, mass, species) {case_when(height > 200 | mass > 200 ~ "large",species == "Droid" ~ "robot",.default = "other")
}case_character_type(150, 250, "Droid")
case_character_type(150, 150, "Droid")
[1] "large"
[1] "robot"

8. 上述函数也可在 mutate() 中使用

starwars %>%mutate(type = case_character_type(height, mass, species)) %>%pull(type)
 [1] "other" "robot" "robot" "large" "other" "other" "other" "robot"[9] "other" "other" "other" "other" "large" "other" "other" "large"
[17] "other" "other" "other" "other" "other" "robot" "other" "other"
[25] "other" "other" "other" "other" "other" "other" "other" "other"
[33] "other" "other" "other" "large" "large" "other" "other" "other"
[41] "other" "other" "other" "other" "other" "other" "other" "other"
[49] "other" "other" "other" "other" "other" "other" "other" "large"
[57] "other" "other" "other" "other" "other" "other" "other" "other"
[65] "other" "other" "other" "other" "other" "other" "large" "large"
[73] "other" "robot" "other" "other" "other" "large" "large" "other"
[81] "other" "large" "other" "other" "other" "robot" "other"

9. case_when() 忽略 NULL 输入。当你想只在特定条件下使用模式时,这很有用。在这里,我们将利用 if 在没有 else 子句时返回 NULL 这一事实。

case_character_type <- function(height, mass, species, robots = TRUE) {case_when(height > 200 | mass > 200 ~ "large",if (robots) species == "Droid" ~ "robot",.default = "other")
}starwars %>%mutate(type = case_character_type(height, mass, species, robots = FALSE)) %>%pull(type)
 [1] "other" "other" "other" "large" "other" "other" "other" "other"[9] "other" "other" "other" "other" "large" "other" "other" "large"
[17] "other" "other" "other" "other" "other" "other" "other" "other"
[25] "other" "other" "other" "other" "other" "other" "other" "other"
[33] "other" "other" "other" "large" "large" "other" "other" "other"
[41] "other" "other" "other" "other" "other" "other" "other" "other"
[49] "other" "other" "other" "other" "other" "other" "other" "large"
[57] "other" "other" "other" "other" "other" "other" "other" "other"
[65] "other" "other" "other" "other" "other" "other" "large" "large"
[73] "other" "other" "other" "other" "other" "large" "large" "other"
[81] "other" "large" "other" "other" "other" "other" "other"

每种情况都按顺序进行检测,每个元素的第一个匹配值决定了其在输出向量中的相应值。如果没有匹配的情况,则使用 参数【.default】 作为最后的 "else "声明。

这篇关于R语言【dplyr】——case_when()是一般向量化的 if-else(),该函数允许您将多个 if_else() 语句矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534853

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一