GELU激活函数: 高斯误差线性单元

2023-12-25 05:08

本文主要是介绍GELU激活函数: 高斯误差线性单元,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 引言
  • GELU公式
  • GELU实验

【Reference】
1. GAUSSIAN ERROR LINEAR UNITS (GELUS)


引言

早期网络使用二元阈值单元,sigmoid激活函数将二元阈值决策平滑,使得神经元可解释为发射率,并得以通过BP算法训练。随着网络深度增加,在训练神经网络时,sigmoid激活函数已被证实不如一些非平滑的非线性激活函数高效,如ReLU通常比sigmoid训练更快、收敛更快,ELUs允许ReLU输出负值,通常能够进一步加快训练速度

深度非线性网络可以很好地拟合数据,因此设计者常向网络引入随机正则化,如隐藏层中添加噪声、应用dropout等,这些正则化操作与输入函数不同。某些随机正则化如dropout,使得网络能够近似于多个网络的集成(集成模型能够显著增加准确率)。正则化与非线性激活函数共同决定网络输出,正则化用于辅助非线性激活函数。

本文提出一种新的非线性激活函数Gaussian Error Linear Unit (GELU),它是自适应dropout修正的期望,与随机正则化有关。GELU使得神经元输出具有概率性。GELU在多数CV、NLP、ASR等领域表现出比ReLU、ELUs更优异的性能。

GELU公式

我们结合dropout、zoneout和RELUs的一些性质构造激活函数,对于同时使用RELUs和dropout的网络,RELUs将输入乘以1或0,而dropout将输入随机乘以0。新的RNN正则化器zoneout,随机将输入乘以1。我们通过随机向输入乘以1或0,合并这些性质,这些zero-one mask随机确定,但依赖于输入。

具体地说,我们使用 m ∼ Bernoulli ( Φ ( x ) ) m\sim \text{Bernoulli}(\Phi(x)) mBernoulli(Φ(x))乘以神经元输入,其中 Φ ( x ) = P ( X ≤ x ) \Phi(x)=P(X\leq x) Φ(x)=P(Xx) X ∼ N ( 0 , 1 ) X\sim \mathcal N(0, 1) XN(0,1)是标准正太分布的累计分布函数。选择这一分布的原因是因为输入特征多服从于正太分布,比如使用Batch Norm的网络。这一条件下,随着输入 x x x的降低,其被drop的概率逐渐增加,这种对输入 x x x的转换是随机的、且依赖于自身值。

这种非线性变换可看作随机正则化器对输入 x x x的期望
x Φ ( x ) = Φ ( x ) × I x + ( 1 − Φ ( x ) ) × 0 x x\Phi(x)=\Phi(x)\times Ix + (1-\Phi(x))\times 0 x xΦ(x)=Φ(x)×Ix+(1Φ(x))×0x
不严谨地说,该表达式表示根据 x x x比其他输入大多少对 x x x进行缩放。由于高斯累计分布函数常用于计算误差函数,因此我们定义GELUs为
GELU ( x ) = x P ( x ≤ X ) = x Φ ( x ) = x ⋅ 1 2 [ 1 + erf ( x / 2 ) ] \text{GELU}(x)=xP(x\leq X)=x\Phi(x)=x\cdot\frac{1}{2}\left[1+\text{erf}(x/\sqrt 2)\right] GELU(x)=xP(xX)=xΦ(x)=x21[1+erf(x/2 )]

公式推导

标准正太分布函数 Φ ( x ) \Phi(x) Φ(x)和右尾函数 Q ( x ) Q(x) Q(x)
Φ ( x ) = P ( X ≤ x ) = 1 2 π ∫ − ∞ x e − x 2 / 2 d x = 1 − Q ( x ) \Phi(x)=P(X\leq x)=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^xe^{-x^2/2}\text dx=1-Q(x) Φ(x)=P(Xx)=2π 1xex2/2dx=1Q(x)
误差函数 erf ( x ) \text{erf}(x) erf(x)
erf ( x ) = 1 − 2 Q ( 2 x ) = 2 π ∫ 0 x e − x 2 d x \text{erf}(x)=1-2Q(\sqrt 2x)=\frac{2}{\sqrt\pi}\int_0^xe^{-x^2}\text dx erf(x)=12Q(2 x)=π 20xex2dx
因此
Φ ( x ) = 1 2 [ 1 + erf ( x / 2 ) ] \Phi(x)=\frac{1}{2}\left[1+\text{erf}(x/\sqrt 2)\right] Φ(x)=21[1+erf(x/2 )]

近似形式为
0.5 x ( 1 + tanh ⁡ [ 2 / π ( x + 0.044715 x 3 ) ] ) o r x σ ( 1.702 x ) 0.5x(1+\tanh[\sqrt{2/\pi}(x+0.044715x^3)])\quad or \quad x\sigma(1.702x) 0.5x(1+tanh[2/π (x+0.044715x3)])orxσ(1.702x)

GELU实验

MNIST CLASSIFICATION
在这里插入图片描述

MNIST AUTOENCODER
在这里插入图片描述

CIFAR-10/100 CLASSIFICATION
在这里插入图片描述

这篇关于GELU激活函数: 高斯误差线性单元的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/534345

相关文章

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最