tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解

本文主要是介绍tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在阅读yolov3代码的时候有下面这样一样代码:
model.compile(optimizer=Adam(lr = lr), loss={'yolo_loss': lambda y_true, y_pred: y_pred}),这行代码在网上有人进行解释过,但是都是看的云里雾里,一般使用compile的时候我们都是直接传递的一个函数对象,这里竟然传递的是一个字典,对此很是不解。


经过大量的饿查阅别人写的博客:最后在这篇博客中得到了答案的启发:链接,这篇文章 写的很好,大家可以去看看。


我在上面文章的基础上,会尽量使用简单的语言来描述这个函数的作用,并给出一个例子帮助大家进行理解。


因为这里是在compile模型,因此,要理解其原委,我们还需要到其模型中去看起所以然,进入模型定义中,我们会发现有下面这样一个loss的层定义:

    model_loss  = Lambda(get_yolo_loss(input_shape, len(model_body.output), num_classes), output_shape    = (1, ), name            = 'yolo_loss',)([*model_body.output, *y_true])

而且我们会发现,这里面给该Lambda层起了一个名字:yolo_loss,是的。你没有看错,就是和前面compile里面的loss的键值一样,这是巧合吗?然而当我将这个name进行修改成其他名字的时候,发现无法进行训练,因此,我们可以确定,这个name就是在comple中进行引用的键值。间接性的将,上面的loss引用的是这里的这个Lambda层。但是否是这样呢?我们在上面的那篇博客中可以得到答案,的确是这样

为了进一步的验证该猜想,我们自定义一个简单的层,然后将最后一层当做Loss层进行处理,及最后一层的输出是一个数,这个数既代表预测的结果,也用来表示函数的损失。

在这里我们定义一个简单的LSTM层来进行说明:

from tensorflow.keras.layers import *
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input,Embedding,LSTM,Dense
import tensorflow as tfword_size = 128
nb_features = 10
nb_classes = 10
encode_size = 64
margin = 0.1embedding = Embedding(nb_features,word_size) # 对单词进行编码
lstm_encoder = LSTM(encode_size) # LSTM层进行定义def encode(input): # 定义一个函数,进行层的传播return lstm_encoder(embedding(input))q_input = Input(shape=(100,)) # 定义一个输入
q_encoded = Dense(encode_size)(q_encoded)  # 将LSTM层的输出放入全连接层进行整合loss = Lambda(lambda x: K.relu(0.001+x[0][:,1:2]+100),name="test_loss")([q_encoded]) # 随便写了一个算法 让第一个数据*0.001+100作为输出,然后让Dense层的输入通过该Lambda层,这一层也是最后一层,模型的整体组成请看下面model_train = Model(inputs=[q_input], outputs=loss) # 定义模型model_train.compile(optimizer='adam', loss={'test_loss':lambda y_true,y_pred: y_pred})# 对模型进行编译,这里也是本篇文章的重点,loss={'test_loss':lambda #y_true,y_pred: y_pred} 表示loss函数引用的是test_loss这个层,后面的两个#参数是tensorflow2中对loss进行重定义的标准输入,在这里表示直接输出预测#值。这样锁可能不太好理解,我们还可以将上面的compile换成下面这个形式:#model_train.compile(optimizer='adam', loss=lambda y_true,y_pred: y_pred)#这样是不是很好理解了呢?loss和之前的传递自定义函数是不是很向呢?想想在我们传递自定义loss函数的时候是怎么传递的,直接将一个函数对象赋给loss,是的,#这里的Lambda就是一个匿名对象,至于后面的参数这是标准的tensorflow自定义#loss必须要传递的链各个值: y_true,y_pred,不好理解的地方在于,这样不是直#接返回的y_predect嘛,是的,在Lambda函数中,我们要求函数直接返回预测值,#也就是这里的函数输出,这这个输出就是最后一层的输出,因此,通过这样定义,#我们即将最后一层当做输出,也将最后一层当做`loss`损失进行优化。t1 = tf.range(10) # 随便定义一个数据进行预测
y = tf.range(10) #  宿便定义一个输出,因为这里我们后面要进行优化,因此这个值随便定义。这里定义y只是为了瞒住fit的时候需要一个y值而已model_train.fit([t1], y, epochs=10) # 进行训练p = model_train.predict([5]) # 预测5这个数的lossprint(p) # 打印p的值

模型的摘要:
在这里插入图片描述

训练的输出:
在这里插入图片描述
可以看到这里训练10步之后输出也即loss为99.57左右,那么可以猜想我们的预测下一个值的输出也应该在99.57左右,因为我们的输出即做预测值使用,也做Loss使用,那到底是不是这样呢?
预测输出:
在这里插入图片描述
可以看到,这和我们的猜想是一样的,也验证了我们上面的说法。

这篇关于tensorflow2中自定义损失、传递loss函数字典/compile(optimizer=Adam(lr = lr), loss= lambda y_true, y_pred: y_pred)理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533795

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一