[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)

本文主要是介绍[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题解

题目本身不难想

首先注意到所有查询的序列长度都是小于logn级别的

我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每次需要O(n*logn)的时间复杂度初始化set并计算位置。总共复杂度O(nlog^2n),看一下时间限制6s,感觉可以过23333。

删除操作可以直接暴力,直接从每种字串的位置集合中删除所有被影响到的位置,然后再把删除后字符串合并产生的新的子串加入到set中,过程中需要支持O(logn)的单点删除和单点查询。

在set中,删除起始点在L~R之间子串信息,再插入起始点在L到x-1的新构成的子串的信息

删除操作最多O(n/logn)次,每次直接暴力就是O(log^2n),总共复杂度O(nlogn)

接下来就是一些小问题,如何维护单点删除、单点查询的序列呢?

首先我们肯定不会去真正的移动序列,保留原始的输入01序列

可以想到用set去维护当前存在的每个坐标,但是支持查询第k个坐标的话得手写平衡树

也可以想到用线段树或者树状数组维护每个位置的存在信息,在线段树或者树状数组上二分来查询删除后的序列中的第k个坐标的真实位置。

这里使用树状数组

树状数组二分类似于倍增查询LCA的思想,十分易懂。

然后我们迅速写完整个内容,交一发,发现TLE了

看一下复杂度,发现瓶颈在于预处理,于是我们把初始化中对每个位置都进行树状数组二分,替换为直接使用当前位置存在信息数组进行处理,这样预处理中计算坐标的部分就变成O(n)了

但是仍然TLE了

现在瓶颈仍然是预处理,如果C++支持对有序序列O(n)建立set就好了

后来看了洛谷上题解的方法,才知道可以用两个优先队列来模拟set

由于我们只需要维护集合中的最小值以及集合的元素个数

使用两个堆,一个维护插入的内容,另一个维护删除的内容

当查询个数时,两个堆的大小相减即可。当查询最小值时,如果“删除堆”中的最小值与“插入堆”中的最小值相等,就两个一起pop掉,直到找到第一个“插入堆”中存在,但“删除堆”中不存在的元素即可。

(其实也可以用两个vector来模拟,因为对于每种子串,查询的次数只有一次,所以可以大胆排序再查询,这样初始化时间复杂度也是O(nlogn),查询删除子串的总时间复杂度是最坏O(nlog^2n)不过似乎也能过,因为sort在大部分都有序的情况下还是很快的)

改完之后,从6.18s变成了1.17s,发生了质的飞跃23333

有人可能会问,优先队列插入不也是O(logn)的吗,为什么会比set快这么多,因为预处理的过程中插入集合的内容是顺序的,根据小根堆的实现,只有当自己比父亲值小时,才会发生交换,所以在预处理建立小根堆的过程中是O(n)的,这样预处理的总复杂度就变成了O(nlogn),删除方面在理论上最坏时间复杂度也是O(nlog^2n)(假设所有的位置都集中在一种子串上,并且“删除堆”和“插入堆”差不多大)

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<queue>
using namespace std;
#define N 1000005
#define LOG 20
int n, n_real, now;
char ss[N];
// 树状数组维护单点删除与单点查询的序列
// 实际坐标->逻辑坐标(删除后的坐标) getsum
// 逻辑坐标->实际坐标  query   树状数组二分
int tra[N];
int getsum(int x)
{int ret=0;for(;x;x-=x&-x) ret+=tra[x];return ret;
}
void update(int x,int k)
{for(;x<=n;x+=x&-x)tra[x]+=k;
}
int query(int k)// 查询删除后序列的第k位置的实际坐标
{int ans=0,sum=0;for(int i=LOG;i>=0;i--){if(ans+(1<<i)<=n && sum+tra[ans+(1<<i)]<k){sum+=tra[ans+(1<<i)];ans+=(1<<i);}}return ans+1;
}
// a是原始数据,tmp是删除后的数组,b表示当前位是否存在(树状数组建立在b上)
bool a[N],tmp[N],b[N];
int pos[N];
void cal_tmp_all()
{int cnt=0;for(int i=1;i<=n;i++){if(b[i]){pos[++cnt]=i;tmp[cnt]=a[i];}}
}
void cal_tmp(int l,int r)
{l=max(1,l);r=min(r,n_real);for(int i=l;i<=r;i++){pos[i]=query(i);tmp[i]=a[pos[i]];}
}
priority_queue<int,vector<int>,greater<int> > S[N],D[N];
//set<int> S[N];
//set<int>::iterator it;
// 将起始点在l r之间,长度为len的数据加入到set或者从set中删除
void update_set(int l,int r,int len,bool flg)
{r=min(n_real,r+len-1);int lim_l= max(now,1<<(len-1)), lim_r= min(n,(1<<len)-1);int mask=(1<<len)-1;int tmp_value=0;for(int i=l;i<=r;i++){tmp_value=((tmp_value<<1)&mask)|tmp[i];if(i-l+1 >= len && tmp_value>=lim_l && tmp_value<=lim_r){if(flg)S[tmp_value].push(pos[i-len+1]);elseD[tmp_value].push(pos[i-len+1]);}}
}
int main()
{scanf("%d",&n);n_real=n;scanf("%s",ss+1);for(int i=1;i<=n;i++){a[i]=int(ss[i]-'0');update(i,1);b[i]=1;}now=1;for(int len=1;n>>(len-1);len++){cal_tmp_all();update_set(1,n_real,len,1);//printf("start len:%d\n",len);for(;now<(1<<len);now++){//printf("now:%d\n",now);if(now>n)return 0;int siz = (int)S[now].size()-(int)D[now].size();if(!siz){printf("-1 0\n");continue;}while(!S[now].empty()&&!D[now].empty() && S[now].top()==D[now].top()){S[now].pop();D[now].pop();}int x=getsum(S[now].top());printf("%d %d\n",x,siz);int l=max(1,x-len+1),r=min(n_real,x+len-1);// 删除受影响的结果cal_tmp(l,r+len-1);update_set(l,r,len,0);// 删除对应的01序列for(int i=x;i<=r;i++){update(pos[i],-1);b[pos[i]]=0;}n_real-=len;// 添加新产生的序列结果cal_tmp(l,x-1+len-1);update_set(l,x-1,len,1);while(!S[now].empty())S[now].pop();while(!D[now].empty())D[now].pop();}}
}

这篇关于[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/531557

相关文章

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析