[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)

本文主要是介绍[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题解

题目本身不难想

首先注意到所有查询的序列长度都是小于logn级别的

我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每次需要O(n*logn)的时间复杂度初始化set并计算位置。总共复杂度O(nlog^2n),看一下时间限制6s,感觉可以过23333。

删除操作可以直接暴力,直接从每种字串的位置集合中删除所有被影响到的位置,然后再把删除后字符串合并产生的新的子串加入到set中,过程中需要支持O(logn)的单点删除和单点查询。

在set中,删除起始点在L~R之间子串信息,再插入起始点在L到x-1的新构成的子串的信息

删除操作最多O(n/logn)次,每次直接暴力就是O(log^2n),总共复杂度O(nlogn)

接下来就是一些小问题,如何维护单点删除、单点查询的序列呢?

首先我们肯定不会去真正的移动序列,保留原始的输入01序列

可以想到用set去维护当前存在的每个坐标,但是支持查询第k个坐标的话得手写平衡树

也可以想到用线段树或者树状数组维护每个位置的存在信息,在线段树或者树状数组上二分来查询删除后的序列中的第k个坐标的真实位置。

这里使用树状数组

树状数组二分类似于倍增查询LCA的思想,十分易懂。

然后我们迅速写完整个内容,交一发,发现TLE了

看一下复杂度,发现瓶颈在于预处理,于是我们把初始化中对每个位置都进行树状数组二分,替换为直接使用当前位置存在信息数组进行处理,这样预处理中计算坐标的部分就变成O(n)了

但是仍然TLE了

现在瓶颈仍然是预处理,如果C++支持对有序序列O(n)建立set就好了

后来看了洛谷上题解的方法,才知道可以用两个优先队列来模拟set

由于我们只需要维护集合中的最小值以及集合的元素个数

使用两个堆,一个维护插入的内容,另一个维护删除的内容

当查询个数时,两个堆的大小相减即可。当查询最小值时,如果“删除堆”中的最小值与“插入堆”中的最小值相等,就两个一起pop掉,直到找到第一个“插入堆”中存在,但“删除堆”中不存在的元素即可。

(其实也可以用两个vector来模拟,因为对于每种子串,查询的次数只有一次,所以可以大胆排序再查询,这样初始化时间复杂度也是O(nlogn),查询删除子串的总时间复杂度是最坏O(nlog^2n)不过似乎也能过,因为sort在大部分都有序的情况下还是很快的)

改完之后,从6.18s变成了1.17s,发生了质的飞跃23333

有人可能会问,优先队列插入不也是O(logn)的吗,为什么会比set快这么多,因为预处理的过程中插入集合的内容是顺序的,根据小根堆的实现,只有当自己比父亲值小时,才会发生交换,所以在预处理建立小根堆的过程中是O(n)的,这样预处理的总复杂度就变成了O(nlogn),删除方面在理论上最坏时间复杂度也是O(nlog^2n)(假设所有的位置都集中在一种子串上,并且“删除堆”和“插入堆”差不多大)

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<queue>
using namespace std;
#define N 1000005
#define LOG 20
int n, n_real, now;
char ss[N];
// 树状数组维护单点删除与单点查询的序列
// 实际坐标->逻辑坐标(删除后的坐标) getsum
// 逻辑坐标->实际坐标  query   树状数组二分
int tra[N];
int getsum(int x)
{int ret=0;for(;x;x-=x&-x) ret+=tra[x];return ret;
}
void update(int x,int k)
{for(;x<=n;x+=x&-x)tra[x]+=k;
}
int query(int k)// 查询删除后序列的第k位置的实际坐标
{int ans=0,sum=0;for(int i=LOG;i>=0;i--){if(ans+(1<<i)<=n && sum+tra[ans+(1<<i)]<k){sum+=tra[ans+(1<<i)];ans+=(1<<i);}}return ans+1;
}
// a是原始数据,tmp是删除后的数组,b表示当前位是否存在(树状数组建立在b上)
bool a[N],tmp[N],b[N];
int pos[N];
void cal_tmp_all()
{int cnt=0;for(int i=1;i<=n;i++){if(b[i]){pos[++cnt]=i;tmp[cnt]=a[i];}}
}
void cal_tmp(int l,int r)
{l=max(1,l);r=min(r,n_real);for(int i=l;i<=r;i++){pos[i]=query(i);tmp[i]=a[pos[i]];}
}
priority_queue<int,vector<int>,greater<int> > S[N],D[N];
//set<int> S[N];
//set<int>::iterator it;
// 将起始点在l r之间,长度为len的数据加入到set或者从set中删除
void update_set(int l,int r,int len,bool flg)
{r=min(n_real,r+len-1);int lim_l= max(now,1<<(len-1)), lim_r= min(n,(1<<len)-1);int mask=(1<<len)-1;int tmp_value=0;for(int i=l;i<=r;i++){tmp_value=((tmp_value<<1)&mask)|tmp[i];if(i-l+1 >= len && tmp_value>=lim_l && tmp_value<=lim_r){if(flg)S[tmp_value].push(pos[i-len+1]);elseD[tmp_value].push(pos[i-len+1]);}}
}
int main()
{scanf("%d",&n);n_real=n;scanf("%s",ss+1);for(int i=1;i<=n;i++){a[i]=int(ss[i]-'0');update(i,1);b[i]=1;}now=1;for(int len=1;n>>(len-1);len++){cal_tmp_all();update_set(1,n_real,len,1);//printf("start len:%d\n",len);for(;now<(1<<len);now++){//printf("now:%d\n",now);if(now>n)return 0;int siz = (int)S[now].size()-(int)D[now].size();if(!siz){printf("-1 0\n");continue;}while(!S[now].empty()&&!D[now].empty() && S[now].top()==D[now].top()){S[now].pop();D[now].pop();}int x=getsum(S[now].top());printf("%d %d\n",x,siz);int l=max(1,x-len+1),r=min(n_real,x+len-1);// 删除受影响的结果cal_tmp(l,r+len-1);update_set(l,r,len,0);// 删除对应的01序列for(int i=x;i<=r;i++){update(pos[i],-1);b[pos[i]]=0;}n_real-=len;// 添加新产生的序列结果cal_tmp(l,x-1+len-1);update_set(l,x-1,len,1);while(!S[now].empty())S[now].pop();while(!D[now].empty())D[now].pop();}}
}

这篇关于[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/530380

相关文章

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI