HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split

本文主要是介绍HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 架构原理

1)StoreFile

保存实际数据的物理文件,StoreFile以HFile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。

2)MemStore

写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。

3)WAL

由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Aheadlogfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

2. 写流程

写流程:

1)Client先访问zookeeper,获取hbase:meta表位于哪个RegionServer。

2)访问对应的RegionServer,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个RegionServer中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的metacache,方便下次访问。

3)与目标RegionServer进行通讯;

4)将数据顺序写入(追加)到WAL;

5)将数据写入对应的MemStore,数据会在MemStore进行排序;

6)向客户端发送ack;

7)等达到MemStore的刷写时机后,将数据刷写到HFile。

3. MemStoreFlush

MemStore刷写时机(要记住开始往memstore和停止mestore刷写的时机。):

  1. 单个Store来看 memstroe 的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。当memstore的大小达到了hbase.hregion.memstore.flush.size(默认值128M)* hbase.hregion.memstore.block.multiplier(默认值4)时,会阻止继续往该memstore写数据。

  2. 从regionerServer中来看regionserver中memstore的总大小达到java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)*hbase.regionserver.global.memstore.size.lower.limit(默认值0.95),region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到regionserver中所有memstore的总大小减小到上述值以下。当 regionserver 中 memstore 的总大小达到 java_heapsize*hbase.regionserver.global.memstore.size(默认值0.4)时,会阻止继续往所有的memstore写数据。

  3. 到达自动刷写的时间,也会触发memstoreflush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)。

  4. 当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进 行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下(该属性名已经废弃, 现无需手动设置,最大值为 32)。

4. 读流程

读流程 :发送Get请求,磁盘和内存一起读,为了加速磁盘的读速度,加了一个Block Cache

1)Client 先访问 zookeeper,获取 hbase:meta 表位于哪个 Region Server。

2)访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey, 查询出目标数据位于哪个 Region Server 中的哪个 Region 中。并将该 table 的 region 信息以 及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问。

3)与目标 Region Server 进行通讯;

4)分别在 Block Cache(读缓存),MemStore 和 Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。

5) 将从文件中查询到的数据块(Block,HFile 数据存储单元,默认大小为 64KB)缓存到 Block Cache。

6)将合并后的最终结果返回给客户端。

5. StoreFile Compaction

由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp) 和不同类型(Put/Delete)有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile。

为了减少 HFile 的个数,以及清理掉过期和删除的数据,会进行 StoreFile Compaction。 Compaction 分为两种,分别是 Minor Compaction 和 Major Compaction。Minor Compaction 会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据。 Major Compaction 会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期 和删除的数据。

6. Region Split

默认情况下,每个Table 起初只有一个 Region,随着数据的不断写入,Region 会自动进行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑, HMaster 有可能会将某个 Region 转移给其他的 Region Server。

Region Split 时机:

1.当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize, 该 Region 就会进行拆分(0.94 版本之前)。

2.当 1 个 region 中 的 某 个 Store 下所有 StoreFile 的 总 大 小 超 过 Min(R^2 * "hbase.hregion.memstore.flush.size",hbase.hregion.max.filesize"),该 Region 就会进行拆分,其 中 R 为当前 Region Server 中属于该 Table 的个数(0.94 版本之后)。

这篇关于HBase基础知识(三):HBase架构进阶、读写流程、MemStoreFlush、StoreFile Compaction、Region Split的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529603

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

nodejs打包作为公共包使用的完整流程

《nodejs打包作为公共包使用的完整流程》在Node.js项目中,打包和部署是发布应用的关键步骤,:本文主要介绍nodejs打包作为公共包使用的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言一、前置准备二、创建与编码三、一键构建四、本地“白嫖”测试(可选)五、发布公共包六、常见踩坑提醒

Ubuntu向多台主机批量传输文件的流程步骤

《Ubuntu向多台主机批量传输文件的流程步骤》:本文主要介绍在Ubuntu中批量传输文件到多台主机的方法,需确保主机互通、用户名密码统一及端口开放,通过安装sshpass工具,准备包含目标主机信... 目录Ubuntu 向多台主机批量传输文件1.安装 sshpass2.准备主机列表文件3.创建一个批处理脚

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

一个Java的main方法在JVM中的执行流程示例详解

《一个Java的main方法在JVM中的执行流程示例详解》main方法是Java程序的入口点,程序从这里开始执行,:本文主要介绍一个Java的main方法在JVM中执行流程的相关资料,文中通过代码... 目录第一阶段:加载 (Loading)第二阶段:链接 (Linking)第三阶段:初始化 (Initia

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分