GAN笔记_李弘毅教程(六)WGAN、EBGAN

2023-12-23 21:32

本文主要是介绍GAN笔记_李弘毅教程(六)WGAN、EBGAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Wasserstein GAN(WGAN)
  • Improved WGAN(WGAN GP)
  • Energy-based GAN(EBGAN)
  • Loss-sensitive GAN(LSGAN)


在大多数情况下, P G {P_G} PG P d a t a {P_{data}} Pdata训练到最后是不会重叠的。因为有两点。
1.data本质: P G {P_G} PG P d a t a {P_{data}} Pdata是高维空间中的低维合成,这个重叠几乎是可以忽略的。(开始训练时)
2.从Sample角度来说,Sample两个部分,这两个部分交叠的部分也比较少。

P G {P_G} PG P d a t a {P_{data}} Pdata没有重叠的时候,用JS散度看它们之间的差异会在train的过程造成很大的障碍。
完全不重叠时,JS divergence=log2,下图最后一张图表示完全重叠。
下图表示,一开始不重叠时,JS divergence=log2,虽然第二张图距离近些,但仍是JS divergence=log2,而且第一张图因为JS divergence等于常数就无法迭代到第二张图。更无法迭代到第三张图。
当两者没有重叠时,二维分类器就可以完全辨别出这两者,最后的出来的目标函数值也会是相同的。

当很平的时候,就迭代不了了。(有点像梯度消失)
解决方法:LSGAN就是把sigmod换成linear。
positive值越接近1越好,negtive值越接近0越好。

Wasserstein GAN(WGAN)

把P这抔土移到Q的平均距离,如果P到Q的distance恒为d,那么Earth Mover’s Distance为1。

但当不恒定的时候,要使两者分布相同,可以有不同的方法。但哪一种才是所需要的?
穷举出每个方法所需要的距离,最小的即为最优。


更正规的表达方式如下图
每一个方块表示要把对应的P拿多少移到对应的Q,越亮表示移动越多。
(为什么一行或一排合起来就是高度?)
γ ( x p , x q ) \gamma ({x_p},{x_q}) γ(xp,xq)表示要从 x p {x_p} xp拿多少 x q {x_q} xq ∣ ∣ x p − x q ∣ ∣ ||{x_p} - {x_q}|| xpxq表示两者间距离
穷举 γ \gamma γ,看哪个 γ \gamma γ W ( P , Q ) W(P,Q) W(P,Q)最小,这个最小的距离 W ( P , Q ) W(P,Q) W(P,Q)即为the best plan

右上角是眼睛的进化过程。下图可以把JS散度过程转为WGAN过程,因此可以迭代成功。

如何设计D,就可用WGAN?
Lipshitz表示D是很平滑的意思。
如果只是一味的让real越来越大,generated越来越小。系统会崩溃。因此需要设置额外的限制。
这个限制就是D必须是平滑的。

Lipshitz函数的定义如下图
output差距不能比input差距大
k=1时,即为1-Lipshitz。
绿色的线是1-Lipshitz。

怎么解?
最原始的方法就是Weight Clipping
设置最大最小值

但是WGAN只是单纯的smooth,因此衍生出一个Improved WGAN(WGAN GP)

Improved WGAN(WGAN GP)

加一个修正项,但无法check无论是哪一个x都满足小于等于1这个条件,所以把x从概率分布为 P p e n a l t y {P_{penalty}} Ppenalty的x中sample出来的。其他范围内的管不了

P p e n a l t y {P_{penalty}} Ppenalty就是下图中蓝色的从 P d a t a {P_{data}} Pdata P G {P_{G}} PG的距离范围。
实验证明这样做ok。
理论上也是因为要从 P G {P_{G}} PG搬到 P d a t a {P_{data}} Pdata,所以中间的蓝色区域才影响结果,其他地方的无所谓。

实际上, ∣ ∣ ∇ x D ( x ) ∣ ∣ ||{\nabla _x}D(x)|| xD(x)越接近1越好,无论大于1还是小于1,都要有惩罚。

Improved WGAN(WGAN GP)也存在一些问题
有人提出要把 P p e n a l t y {P_{penalty}} Ppenalty放到 P d a t a {P_{data}} Pdata里。

也可以用Spectrum Norm(频谱范数?)
能让每一个梯度范数都小于1

以下是原始GAN的算法

而WGAN改变的地方如下
去掉sigmoid,让输出是linear的。
加上Weight clipping,来使结果收敛。

Energy-based GAN(EBGAN)

BEGAN是它的变形。
改了D的架构,本来D是二维分类器架构,但EBGAN将其变为一个autoencoder;G不变。
D输出的也是scalar,scalar是从autoencoder出来的。
好处就是这个autoencoder可以在没有G的情况下用真实值就被预训练。
用原来的方法,刚开始D不会很厉害的。用EBGAN一开始就可以产生比较厉害的D。

建设是难得,破坏是容易的。
D中negative样本对应的值小于一个值就行

Loss-sensitive GAN(LSGAN)

当已经有相对比较逼真的图片时,那就不要把它压得很低,放到上面点的位置。

这篇关于GAN笔记_李弘毅教程(六)WGAN、EBGAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529531

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Logback在SpringBoot中的详细配置教程

《Logback在SpringBoot中的详细配置教程》SpringBoot默认会加载classpath下的logback-spring.xml(推荐)或logback.xml作为Logback的配置... 目录1. Logback 配置文件2. 基础配置示例3. 关键配置项说明Appender(日志输出器

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal