算数平均数、调和平均数、几何平均数的计算方法与应用场合

2023-12-23 18:44

本文主要是介绍算数平均数、调和平均数、几何平均数的计算方法与应用场合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 定义

1、算数平均数:又称均值,是统计学中最基本,最常用的一种平均指标,分为简单算术平均数、加权算术平均数。

2、调和平均数:又称倒数平均数,是总体各统计变量倒数的算数平均数的倒数。分为数学调和平均数(数值倒数的平均数的倒数)和统计调和平均数(计算结果与加权算术平均数完全相等)。

3、几何平均数:几何平均数是对各变量值的连乘积开项数次方根。根据所拿掌握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。

 计算方法
1、算数平均数:

设一组数据为X1,X2,...,Xn,简单地算术平均数的计算公式为:

  M=\frac{x_{1}+x_{2}+x_{3}+\cdots + x_{n}}{n}

加权算术平均:主要用于处理经分组整理数据。

设原始数据被分成K组,各组的组中值为X1,X2,...Xk,各组的频数分别为f1,f2,...fk,加权算术平均数的计算公式为:

M=\frac{x_{1} \times f_{1} +x_{2} \times f_{2} +x_{3} \times f_{3} +\cdots + x_{n} \times f_{k} }{ f_{1} + f_{2} + f_{3} +\cdots + f_{k} }

2、调和平均数:

简单调和平均数是算术平均数的变形。

H_{n}= \frac{1}{ \frac{1}{n}{} \sum_{i=1}^{n} \frac{1}{ x_{i}}} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}} }

加权调和平均数:

H_{n}= \frac{1}{ \frac{1}{m_{1}+m_{2}+...+m_{n}}( \frac{1}{x_{1}} + \frac{2}{x_{2}}+ ... + \frac{n}{x_{n}}))} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}}

例如:某工厂购进材料三批,每批价格及采购金额资料如下表:

价格(元/千克)(x)采购金额(元)(m)采购数量(千克)(m/x)
第一批3510000286
第二批4020000500
第三批4515000330
合计-450001116

H_{n} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}} = \frac{45000}{1116} = 40.32

3、几何平均数:

简单几何平均数:

G = \sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}}

加权几何平均数:

G_{n} = \sum_{i=1}^{n} f_{i} \sqrt{ \prod_{i=1}^{n} x_{i}^{f_{i}} }

 应用场合

1、算数平均数:适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

简单算术平均数适用于未分组的原始数据。加权平均数用于分组的数据。

2、调和平均数:可以用于计算平均速度,例:计算4x100米接力赛中,运动员的总体速度。

3、几何平均数:

1、对比率、指数等进行平均;

2、计算平均发展速度;

3、复利下的平均年利率;

4、连续作业的车间产品的平均合格率;

计算总水平、总成果等所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数。

 特点
算术平均值是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小抽样变化的影响等特点。但是极易受极端数据的影响,每个数据的或大或小的变化都会影响最终结果。

调和平均数具有以下几个主要特点:

1、调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。

2、只要有一个标志值为0,就不能计算调和平均数。

3、当组距数列有开口组时,其组中值即使按照相邻组距计算,假定性也很大。

4、调和平均数应用的范围较小。

三者的关系:

调和平均数 ≤ 几何平均数 ≤ 算术平均数 ≤ 平方平均数

摘自:

算数平均数、调和平均数、几何平均数的计算方法与应用场合 - 知乎 (zhihu.com)

这篇关于算数平均数、调和平均数、几何平均数的计算方法与应用场合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/529065

相关文章

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em