MNN学习笔记(六):配置visual studio项目

2023-12-23 10:48

本文主要是介绍MNN学习笔记(六):配置visual studio项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个其实很简单,原因是MNN项目组已经提供了编译好的库:

1.下载编译好的MNN库

下载地址为:https://github.com/alibaba/MNN/releases

下载两个文件:Source.code和MNN-WindowsX64-0.2.1.7.zip

2.在visual studio上进行配置

注意visual studio版本为2017,我习惯把这些库都跟opencv放一起,具体来讲就是:

首先,把从Source code中解压的include文件如图1所示,复制出来;

然后,在自己的opencv的include文件夹下面新建一个MNN子文件夹,将上面的头文件复制过去:

其次,将解压好的MNN-WindowsX64-0.2.1.7.zip文件中MNN.dll和MNN.lib放到opencv对应位置:

最后,跟配置opencv一样,新建一个项目,配置项目:

3.测试代码

总共三个文件:

第一个文件:mobilenetssd.h

#ifndef _MOBILENET_SSD_H_
#define _MOBILENET_SSD_H_#include <vector>#include "MNN/Interpreter.hpp"
#include "MNN/MNNDefine.h"
#include "MNN/Tensor.hpp"
#include "MNN/ImageProcess.hpp"#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"namespace mirror {
struct ObjectInfo {std::string name_;cv::Rect location_;float score_;
};class MobilenetSSD {
public:MobilenetSSD();~MobilenetSSD();int Init(const char* root_path);int Detect(const cv::Mat& img_src, std::vector<ObjectInfo>* objects);
private:uint8_t* GetImage(const cv::Mat& img_src) {uchar* data_ptr = new uchar[img_src.total() * 4];cv::Mat img_tmp(img_src.size(), CV_8UC4, data_ptr);cv::cvtColor(img_src, img_tmp, CV_BGR2RGBA, 4);return (uint8_t*)img_tmp.data;}private:bool initialized_;const cv::Size inputSize_ = { 300, 300 };std::vector<int> dims_ = { 1, 3, 300, 300 };const float meanVals_[3] = { 0.5f, 0.5f, 0.5f };const float normVals_[3] = { 0.007843f, 0.007843f, 0.007843f };std::vector<std::string> class_names = {"background", "aeroplane", "bicycle", "bird", "boat","bottle", "bus", "car", "cat", "chair","cow", "diningtable", "dog", "horse","motorbike", "person", "pottedplant","sheep", "sofa", "train", "tvmonitor"};std::shared_ptr<MNN::Interpreter> mobilenetssd_interpreter_;MNN::Session* mobilenetssd_sess_ = nullptr;MNN::Tensor* input_tensor_ = nullptr;std::shared_ptr<MNN::CV::ImageProcess> pretreat_data_ = nullptr;};}#endif // !_MOBILENET_SSD_H_

第二个文件:mobilenetssd.cpp

#include "mobilenetssd.h"
#include <iostream>
#include <string>#include "opencv2/imgproc.hpp"namespace mirror {MobilenetSSD::MobilenetSSD() {initialized_ = false;
}MobilenetSSD::~MobilenetSSD() {mobilenetssd_interpreter_->releaseModel();mobilenetssd_interpreter_->releaseSession(mobilenetssd_sess_);
}int MobilenetSSD::Init(const char * root_path) {std::cout << "start Init." << std::endl;std::string model_file = std::string(root_path) + "/mobilenetssd.mnn";mobilenetssd_interpreter_ = std::unique_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_file.c_str()));if (nullptr == mobilenetssd_interpreter_) {std::cout << "load model failed." << std::endl;return 10000;}MNN::ScheduleConfig schedule_config;schedule_config.type = MNN_FORWARD_CPU;schedule_config.numThread = 4;MNN::BackendConfig backend_config;backend_config.precision = MNN::BackendConfig::Precision_High;backend_config.power = MNN::BackendConfig::Power_High;schedule_config.backendConfig = &backend_config;mobilenetssd_sess_ = mobilenetssd_interpreter_->createSession(schedule_config);// image processerMNN::CV::Matrix trans;trans.setScale(1.0f, 1.0f);MNN::CV::ImageProcess::Config img_config;img_config.filterType = MNN::CV::BICUBIC;::memcpy(img_config.mean, meanVals_, sizeof(meanVals_));::memcpy(img_config.normal, normVals_, sizeof(normVals_));img_config.sourceFormat = MNN::CV::RGBA;img_config.destFormat = MNN::CV::RGB;pretreat_data_ = std::shared_ptr<MNN::CV::ImageProcess>(MNN::CV::ImageProcess::create(img_config));pretreat_data_->setMatrix(trans);std::string input_name = "data";input_tensor_ = mobilenetssd_interpreter_->getSessionInput(mobilenetssd_sess_, input_name.c_str());mobilenetssd_interpreter_->resizeTensor(input_tensor_, dims_);mobilenetssd_interpreter_->resizeSession(mobilenetssd_sess_);initialized_ = true;std::cout << "end Init." << std::endl;return 0;
}int MobilenetSSD::Detect(const cv::Mat & img_src, std::vector<ObjectInfo>* objects) {std::cout << "start detect." << std::endl;if (!initialized_) {std::cout << "model uninitialized." << std::endl;return 10000;}if (img_src.empty()) {std::cout << "input empty." << std::endl;return 10001;}int width = img_src.cols;int height = img_src.rows;// preprocesscv::Mat img_resized;cv::resize(img_src, img_resized, inputSize_);uint8_t* data_ptr = GetImage(img_resized);pretreat_data_->convert(data_ptr, inputSize_.width, inputSize_.height, 0, input_tensor_);mobilenetssd_interpreter_->runSession(mobilenetssd_sess_);std::string output_name = "detection_out";MNN::Tensor* output_tensor = mobilenetssd_interpreter_->getSessionOutput(mobilenetssd_sess_, output_name.c_str());// copy to hostMNN::Tensor output_host(output_tensor, output_tensor->getDimensionType());output_tensor->copyToHostTensor(&output_host);auto output_ptr = output_host.host<float>();for (int i = 0; i < output_host.height(); ++i) {int index = i * output_host.width();ObjectInfo object;object.name_ = class_names[int(output_ptr[index + 0])];object.score_ = output_ptr[index + 1];object.location_.x = output_ptr[index + 2] * width;object.location_.y = output_ptr[index + 3] * height;object.location_.width = output_ptr[index + 4] * width - object.location_.x;object.location_.height = output_ptr[index + 5] * height - object.location_.y;objects->push_back(object);}std::cout << "end detect." << std::endl;return 0;
}}

第三个文件:main.cpp

#include "mobilenetssd.h"
#include "opencv2/opencv.hpp"int main(int argc, char* argv[]){const char* img_path = "./data/images/test.jpg";cv::Mat img_src = cv::imread(img_path);mirror::MobilenetSSD* mobilenetssd = new mirror::MobilenetSSD();const char* root_path = "./data/models";mobilenetssd->Init(root_path);std::vector<mirror::ObjectInfo> objects;mobilenetssd->Detect(img_src, &objects);int num_objects = static_cast<int>(objects.size());for (int i = 0; i < num_objects; ++i) {std::cout << "location: " << objects[i].location_ << std::endl;cv::rectangle(img_src, objects[i].location_, cv::Scalar(255, 0, 255), 2);char text[256];sprintf_s(text, "%s %.1f%%", objects[i].name_.c_str(), objects[i].score_ * 100);int baseLine = 0;cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);cv::putText(img_src, text, cv::Point(objects[i].location_.x,objects[i].location_.y + label_size.height),cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));}cv::imwrite("./data/images/cat.jpg", img_src);cv::imshow("result", img_src);cv::waitKey(0);delete mobilenetssd;system("pause");return 0;
}

最后结果:

需要用到的模型和测试图片下载地址:https://download.csdn.net/download/sinat_31425585/12137855

打完收工!

这篇关于MNN学习笔记(六):配置visual studio项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527761

相关文章

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.