R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

本文主要是介绍R语言中使用ggplot2绘制散点图箱线图,附加显著性检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。

alt

本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。


加载R包与数据

library(ggpubr) 
library(patchwork) 
library(ggsci)
library(tidyverse)
# 使用R语言自带的iris数据集,并随机分成两组
data <- iris
data$Group <- NA
data$Group[sample(1:nrow(data),size = (nrow(data)/2))] <- "A"
data$Group[is.na(data$Group)] <- "B"

alt 在实际数据可视化过程中,输入数据格式也和上面类似,至少有两列,其中一列是分类,另一列是数值。

绘制箱线图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)

这里将Species设置为x轴,Sepal.Width设置为y轴,箱子内部填充颜色与Species映射。 alt

这段代码的作用是创建一个箱形图,显示不同物种(Species)的萼片宽度(Sepal.Width)分布,且不同物种的箱形用不同颜色表示,并且这些颜色半透明。

这种类型的图表通常用于展示和比较不同类别或组的数据分布情况,特别是中位数、四分位数等统计信息。

绘制散点图

ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_jitter(aes(color = Species))
alt

利用ggplot2包创建散点图,并通过geom_jitter功能添加一些随机噪声来分散点,以便更清晰地展示数据。

绘制箱线图+散点图

p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())
p
alt

单因素多水平比较

对于两组以上的独立样品,如果数据同时满足正态性和方差齐性,可以采用方差分析(ANOVA)或者Kruskal检验,如果不满足可采用Kruskal检验。

p <- p + stat_compare_means(
    method = "kruskal.test",
    label = "p.format",
    label.x = 2,
    label.y = 4,
    show.legend = F
)
p
alt

可以看到上图中自动标注的显著性P值,通过修改label参数可以转换展示方式,默认显示检验方法和p值。

p.format只显示p值不显示检验方法,p.signif显示显著性水平符号,ns: p > 0.05、*: p <= 0.05、**: p <= 0.01、***: p <= 0.001、****: p <= 0.0001。

  • method:选择统计学检验的方法
alt

单因素两两比较

如果想看两两之间的差异显著性,例如“setosa”和“versicolor”,可以通过wilcox.test方法进行检验。

# 首先设置比较的列表
compare_list <- list(
    c("setosa","versicolor"),
    c("versicolor","virginica")
p <- ggplot(data,aes(x = Species,y = Sepal.Width)) +
    geom_boxplot(aes(fill = Species),alpha = 0.7)+
    geom_jitter(aes(color = Species))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()+
    theme(panel.grid = element_blank())+
    stat_compare_means(
    comparisons = compare_list,
    method = "wilcox.test",
    label = "p.signif")
)

代码中stat_compare_means函数提供统计学检验,调节参数可以转换方法和展示方式。 alt

双因素组内比较

如果引入分组信息作为另外一个因素,那么可以对每个水平内两组进行比较。

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)
p
alt

箱线 + 散点

p <- ggplot(data,aes(x = Species,y = Sepal.Length,color = Group))+
    geom_boxplot(aes(fill=Group),alpha=0.5)+
    geom_jitter(position = position_jitterdodge(jitter.width = 0.5,
                                                jitter.height = 0.5,
                                                dodge.width = 0.2))+
    scale_fill_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    scale_color_manual(values = c("#f79f1f","#a3cb38","#1289a7"))+
    theme_bw()
p
alt

position_jitterdodge函数可以调整散点图的抖动范围,scale_fill_manual用于调整填充颜色,theme_bw用于设置主题,这段代码仅作图。

统计学检验

p <- p + stat_compare_means(
    aes(group = Group),
    label = "p.format",
    show.legend = F,
    label.y = 8.5
)
p
alt

这张图x轴是不同分类,每个分类下有A和B两组,y轴表示具体的值,每个分类上有P值标注。

在实际的分析可视化过程中,还要考虑实验设计、数据分布状态等因素,合理选择检验方法,并根据目的和需求修改相应参数。

本文由 mdnice 多平台发布

这篇关于R语言中使用ggplot2绘制散点图箱线图,附加显著性检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/527543

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3