Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析

2023-12-23 04:44

本文主要是介绍Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析

我们知道torch.meshgrid()函数的功能是生成网格,可以用于生成坐标;

在numpy中也有一样的函数np.meshgrid(),但是用法不太一样,我们直接上代码进行解释。

1、两者在用法上的区别

比如:我要生成下图的xy坐标点,看下两者的实现方式:

在这里插入图片描述

np.meshgrid()

>>> import numpy as np
>>> w, h = 4, 2
# 注意,此时输入的是由w和h生成的一维数组
#      此时输出的是网格x的坐标grid_x以及网格y的坐标grid_y
>>> grid_x, grid_y  = np.meshgrid(np.arange(w), np.arange(h)) >>> grid_x
array([[0, 1, 2, 3],  [0, 1, 2, 3]])
>>> grid_y
array([[0, 0, 0, 0],[1, 1, 1, 1]])

torch.meshgrid()

>>> import torch
# 注意,此时输入的是由h和w生成的一维数组(和numpy中的输入顺序相反)
#      此时输出的是网格y的坐标grid_y以及网格x的坐标grid_x(和numpy中的输出顺序相反)
>>> grid_y, grid_x =  torch.meshgrid(
...         torch.arange(h),
...         torch.arange(w)
...     )
>>> grid_x
tensor([[0, 1, 2, 3],[0, 1, 2, 3]])
>>> grid_y
tensor([[0, 0, 0, 0],[1, 1, 1, 1]])

2、应用案例

2.1 利用np.meshgrid()来画决策边界

我们可以利用np.meshgrid()来画等高线图

# 等高线图
import numpy as np
import matplotlib.pyplot as plt# 模拟海拔高度
def fz(x, y):z = (1 -x / 2 + x**5 + y**3) * np.exp(-x**2-y**2)return zw = np.linspace(-4, 4, 100)
h = np.linspace(-2, 2, 100)grid_x, grid_y = np.meshgrid(w, h)
z = fz(grid_x, grid_y)plt.figure('Contour Chart',facecolor='lightgray')
plt.title('contour',fontsize=16)
plt.grid(linestyle=':')cntr = plt.contour(grid_x, # 网格坐标矩阵的x坐标(2维数组)grid_y, # 网格坐标矩阵的y坐标(2维数组)z,      # 网格坐标矩阵的z坐标(2维数组)8,      # 等高线绘制8部分colors = 'black', # 等高线图颜色linewidths = 0.5 # 等高线图线宽
)
# 设置标签
plt.clabel(cntr, inline_spacing = 1, fmt='%.2f', fontsize=10)
# 填充颜色  大的是红色  小的是蓝色
plt.contourf(grid_x, grid_y, z, 8, cmap='jet')plt.legend()
plt.show()

在这里插入图片描述

我们可以利用np.meshgrid()来画决策边界。

from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
import numpy as npfrom sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC# 使用sklearn自带的moon数据
X, y = make_moons(n_samples=100,noise=0.15,random_state=42)# 绘制生成的数据
def plot_dataset(X,y,axis):plt.plot(X[:,0][y == 0],X[:,1][y == 0],'bs')plt.plot(X[:,0][y == 1],X[:,1][y == 1],'go')plt.axis(axis)plt.grid(True,which='both')# 画出决策边界
def plot_pred(clf,axes):w = np.linspace(axes[0],axes[1], 100)h = np.linspace(axes[2],axes[3], 100)grid_x, grid_y = np.meshgrid(w, h)# grid_x 和 grid_y 被拉成一列,然后拼接成10000行2列的矩阵,表示所有点grid_xy = np.c_[grid_x.ravel(), grid_y.ravel()]# 二维点集才可以用来预测y_pred = clf.predict(grid_xy).reshape(grid_x.shape)# 等高线plt.contourf(grid_x, grid_y,y_pred,alpha=0.2)ploy_kernel_svm_clf = Pipeline(steps=[("scaler",StandardScaler()),("svm_clf",SVC(kernel='poly', degree=3, coef0=1, C=5))]
)ploy_kernel_svm_clf.fit(X,y)plot_pred(ploy_kernel_svm_clf,[-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()

在这里插入图片描述

2.2 利用torch.meshgrid()生成网格所有坐标的矩阵

在目标检测YOLO中将图像划分为单元网格的部分就用到了torch.meshgrid()函数。

import torch
import numpy as npdef create_grid(input_size, stride=32):# 1、获取原始图像的w和hw, h = input_size, input_size# 2、获取经过32倍下采样后的feature mapws, hs = w // stride, h // stride# 3、生成网格的y坐标和x坐标grid_y , grid_x = torch.meshgrid([torch.arange(hs),torch.arange(ws)])# 4、将grid_x和grid_y进行拼接,拼接后的维度为【H, W, 2】grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()# 【H, W, 2】 -> 【HW, 2】grid_xy = grid_xy.view(-1, 2)return grid_xyif __name__ == '__main__':print(create_grid(input_size=32*4))
# 生成网格所有坐标的矩阵
tensor([[0., 0.],[1., 0.],[2., 0.],[3., 0.],[0., 1.],[1., 1.],[2., 1.],[3., 1.],[0., 2.],[1., 2.],[2., 2.],[3., 2.],[0., 3.],[1., 3.],[2., 3.],[3., 3.]])

这篇关于Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/526760

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分