有限元法计算二维圆柱绕流问题——Python代码实现

2023-12-22 20:30

本文主要是介绍有限元法计算二维圆柱绕流问题——Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题描述

选取流函数Ψ为变量,对拉普拉斯方程进行求解(右边界为自然边界条件,其余边界为本质边界条件);

网格数据文件的生成暂时不在本文中详述。

二、节点和单元的数据读取

import numpy as np
import matplotlib as plt
from mpl_toolkits.mplot3d import Axes3D# 打开文件
try:with open('grid.dat', 'r') as f:# 读取节点数NP和单元数NEline = f.readline().strip()NP, NE = map(int, line.split())# 读取节点坐标X[0:NP,0]和X[0:NP,1]X = np.zeros((NP, 2),dtype = float)for i in range(NP):line = f.readline().strip()X[i] = np.array(list(map(float, line.split())))# 读取单元节点对应关系数组NOD[0:NE,0:3]NOD = np.zeros((NE,3),dtype = int)for i in range(NE):line = f.readline().strip()NOD[i] = np.array(list(map(int, line.split())))-1 #注意文件里的索引是从1开始的,而节点坐标数组X是从0开始的except FileNotFoundError:print("文件不存在")
except Exception as e:print("文件读取失败:", e)

三、设置本质边界条件

#设置本质边界条件
Ψ = np.zeros(NP)
substantial_bound_index = []
unknown_index = []
for i in range(NP):if X[i,1] == 0 :Ψ[i] = 0substantial_bound_index.append(i)elif X[i,1] == 2:Ψ[i] = 2substantial_bound_index.append(i)elif X[i,0] == -3.5:Ψ[i] = X[i,1]substantial_bound_index.append(i)elif abs(X[i,0]**2 + X[i,1]**2 - 1)<= 1e-3:#如果网格尺度变化,此处可能需要调整Ψ[i] =  0substantial_bound_index.append(i)else:unknown_index.append(i)

四、计算单元方程和整体方程

A_overall = np.zeros((NP,NP)) #整体方程的系数矩阵
f_overall = np.zeros(NP) #整体方程的右端项
#遍历所有单元,求单元方程的系数矩阵,并累加到整体方程的系数矩阵上
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始的X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)A_overall[node_index[0],node_index[0]] += b1*b1 + c1*c1A_overall[node_index[1],node_index[1]] += b2*b2 + c2*c2A_overall[node_index[2],node_index[2]] += b3*b3 + c3*c3A_overall[node_index[0],node_index[1]] += b1*b2+c1*c2A_overall[node_index[1],node_index[0]] += b1*b2+c1*c2A_overall[node_index[0],node_index[2]] += b1*b3+c1*c3A_overall[node_index[2],node_index[0]] += b1*b3+c1*c3A_overall[node_index[1],node_index[2]] += b2*b3+c2*c3A_overall[node_index[2],node_index[1]] += b2*b3+c2*c3
#代入本质边界条件上的函数值,消元,只剩下待求节点的函数值
#计算消元后待求节点对应的右端项
for i in unknown_index:sum = 0for j in substantial_bound_index:sum += (-1)*A_overall[i,j]* Ψ[j]f_overall[i] = sum
#解线性方程组
A_tosolve = np.zeros((len(unknown_index),len(unknown_index)))
A_tosolve = A_overall[np.ix_(unknown_index,unknown_index)]
f_tosolve = f_overall[np.ix_(unknown_index)]
sol = np.linalg.solve(A_tosolve, f_tosolve)
#得到完整的节点Ψ数组
pos = 0
for i in unknown_index:Ψ[i] = sol[pos]pos+=1

五、计算单元和节点的流速和压强分布

首先利用前面计算出的节点流函数值,插值得到每个单元的流速;

然后,每个节点的流速则用相邻单元流速的加权平均(以单元面积为权重)得到;

最后,通过伯努利方程计算出节点的压强。

#计算单元的速度
vx = np.zeros(NE)
vy = np.zeros(NE)#计算节点的速度——每个节点的速度采用相邻单元速度的面积加权平均
node_sum_area = np.zeros(NP) #每个节点相邻的累积面积
vx_node = np.zeros(NP)
vy_node = np.zeros(NP)#遍历所有单元
for i in range(NE):X_i = np.zeros(3)Y_i = np.zeros(3)node_index = np.zeros(3)node_index = NOD[i,:] #是从0开始X_i = X[node_index,0]Y_i = X[node_index,1]A = 0.5*((X_i[1]-X_i[0])*(Y_i[2]-Y_i[0])-(Y_i[1]-Y_i[0])*(X_i[2]-X_i[0]))b1 = (Y_i[1]-Y_i[2])/(2*A)b2 = (Y_i[2]-Y_i[0])/(2*A)b3 = (Y_i[0]-Y_i[1])/(2*A)c1 = -(X_i[1]-X_i[2])/(2*A)c2 = -(X_i[2]-X_i[0])/(2*A)c3 = -(X_i[0]-X_i[1])/(2*A)vx[i] = c1*Ψ[NOD[i,0]]+c2*Ψ[NOD[i,1]]+c3*Ψ[NOD[i,2]]vy[i] = -b1*Ψ[NOD[i,0]]-b2*Ψ[NOD[i,1]]-b3*Ψ[NOD[i,2]]#更新节点的速度均值for j in range(3):s0 = node_sum_area[NOD[i,j]]vx0 = vx_node[NOD[i,j]]vx_node[NOD[i,j]] = (s0*vx0+A*vx[i])/(s0+A)vy0 = vy_node[NOD[i,j]]vy_node[NOD[i,j]] = (s0*vy0+A*vy[i])/(s0+A)node_sum_area[NOD[i,j]]+= A#计算节点的压力
p_node = np.zeros(NP)
for i in range(NP):p_node[i] = 0.5*(1-vx_node[i]**2 - vy_node[i]**2)

六、计算结果

一、流函数数值解的3D图

from mpl_toolkits.mplot3d import Axes3D
from matplotlib.tri import Triangulationtri = Triangulation(X[:, 0], X[:, 1])
#一、绘制流函数数值解的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], Ψ, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('Ψ_num')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('Ψ')
plt.pyplot.show()

二、数值解的流线图

#二、绘制数值解的流线图
z = Ψ
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _num')
plt.pyplot.show()

 

对比:解析解的流线图

# 三、绘制解析解的流线图
#解析解
Ψ_true= np.zeros(NP)
for i in range(NP):Ψ_true[i] = X[i, 1]*(1-1/(X[i,0]**2 + X[i,1]**2))
z = Ψ_true
# 绘制等值线
levels = np.linspace(z.min(), z.max(), 30)
plt.pyplot.tricontour(tri, z, levels=levels, colors='k')
# 添加等值线标签
plt.pyplot.tricontourf(tri, z, levels=levels, cmap='viridis')
plt.pyplot.colorbar()
plt.pyplot.title('streamline _true')
plt.pyplot.show()

可以观察到数值解与解析解的流线形状是比较相近的。

三、节点流速和压强的数值结果

#四、绘制节点压强的3D图
fig = plt.pyplot.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], p_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('pressure')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('p')
plt.pyplot.show()

#五、绘制节点流速的3D图
fig = plt.pyplot.figure()ax = fig.add_subplot(121, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vx_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vx')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vx')ax = fig.add_subplot(122, projection='3d')
ax.plot_trisurf(X[:, 0], X[:, 1], vy_node, triangles=tri.triangles, cmap='viridis',alpha = 0.9)
ax.set_title('vy')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('vy')plt.pyplot.show()

数值解在圆柱壁面附近出现较大的波动。 

这篇关于有限元法计算二维圆柱绕流问题——Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525367

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e