泰勒级数详解

2023-12-22 20:18
文章标签 详解 级数 泰勒

本文主要是介绍泰勒级数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      • 1.多项式的函数图像特点
      • 2.用多项式对 exexe^ x 进行逼近
      • 3.用多项式对 sin(x) 进行逼近
      • 4.泰勒公式与拉格朗日中值定理的关系
      • 5.泰勒公式是怎么推导的?
      • 6.泰勒公式的用处

泰勒公式一句话描述:就是用多项式函数去逼近光滑函数。
先来感受一下:
这里写图片描述
定理:
设 n 是一个正整数。如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有

f(x)=f(a)+f1!(xa)+f(2)(a)2!(xa)2+...+fn(a)n!(xa)n+Rn(x) f ( x ) = f ( a ) + f ′ 1 ! ( x − a ) + f ( 2 ) ( a ) 2 ! ( x − a ) 2 + . . . + f n ( a ) n ! ( x − a ) n + R n ( x )

其中的多项式称为函数在a 处的泰勒展开式,剩余的 Rn(x) R n ( x ) 是泰勒公式的余项,是 (xa)n ( x − a ) n 的高阶无穷小。
泰勒公式的定义看起来气势磅礴,高端大气。如果 a=0 的话,就是麦克劳伦公式,即 f(x)=Nn=0fn(0)n!xn+Rn(x) f ( x ) = ∑ n = 0 N f n ( 0 ) n ! x n + R n ( x ) ,这个看起来简单一点,我们下面只讨论麦克劳伦公式,可以认为和泰勒公式等价。

1.多项式的函数图像特点

f(x)=Nn=0fn(0)n!xn f ( x ) = ∑ n = 0 N f n ( 0 ) n ! x n 展开来就是 f(0)+f(0)x+f′′(0)2!x2+...+fn(0)n!xn,f(0),f′′(0)2! f ( 0 ) + f ′ ( 0 ) x + f ″ ( 0 ) 2 ! x 2 + . . . + f n ( 0 ) n ! x n , f ( 0 ) , f ″ ( 0 ) 2 ! ,这些都是常数,我们暂时不管,先看看其中最基础的组成部分,幂函数有什么特点。
这里写图片描述
这里写图片描述
可以看到,幂函数其实只有两种形态,一种是关于 Y 轴对称,一种是关于原点对称,并且指数越大,增长速度越大。
那幂函数组成的多项式函数有什么特点呢?
这里写图片描述
怎么才能让 x^2 和 x^9 的图像特性能结合起来呢?
这里写图片描述
我们来动手试试看看系数之间如何压制的:
这里写图片描述

2.用多项式对 ex e x 进行逼近

ex e x 是麦克劳伦展开形式上最简单的函数,有 e 就是这么任性。
ex=1+x+12!x2+...+1n!xn+Rn(x) e x = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + R n ( x )
这里写图片描述
增加一个 14!x4 1 4 ! x 4 看看
这里写图片描述
可以看出, 1n!xn 1 n ! x n 不断的弯曲着那根多项式形成的铁丝去逼近 ex e x 。并且 n 越大,起作用的区域距离0越远。

3.用多项式对 sin(x) 进行逼近

sin(x) 是周期函数,有非常多的弯曲,难以想象可以用多项式进行逼近。
sin(x)=x13!x3++(1)n(2n+1)!x(2n+1)+Rn(x) s i n ( x ) = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x ( 2 n + 1 ) + R n ( x )
这里写图片描述
同样的,我们再增加一个 17!x7 1 7 ! x 7 试试。
这里写图片描述
可以看到 17!x7 1 7 ! x 7 在适当的位置,改变了 x13!x3+15!x5 x − 1 3 ! x 3 + 1 5 ! x 5 的弯曲方向,最终让 x13!x3+15!x517!x7 x − 1 3 ! x 3 + 1 5 ! x 5 − 1 7 ! x 7 更好的逼近了 sin(x) s i n ( x )

4.泰勒公式与拉格朗日中值定理的关系

拉格朗日中值定理:如果函数 f(x) 满足,在 [a,b] 上连续,在 (a,b) 上可导,那么至少有一点 θ(a<θ<b) θ ( a < θ < b ) 使等式 f(θ)=f(a)f(b)ab f ′ ( θ ) = f ( a ) − f ( b ) a − b 成立。—-维基百科
数学定义的文字描述总是非常严格、拗口,我们来看下拉格朗日中值定理的几何意义:
这里写图片描述
这个和泰勒公式有什么关系?泰勒公式有个余项 Rn(x) R n ( x ) 我们一直没有提。
余项即使用泰勒公式估算的误差,即 f(x)n=0Nf(n)(a)n!(xa)n=Rn(x) f ( x ) − ∑ n = 0 N f ( n ) ( a ) n ! ( x − a ) n = R n ( x )
余项的代数式是, Rn(x)=f(n+1)(θ)(n+1)!(xa)(n+1) R n ( x ) = f ( n + 1 ) ( θ ) ( n + 1 ) ! ( x − a ) ( n + 1 ) ,其中 a<θ<x a < θ < x 。是不是看着有点像了?
当 N=0 的时候,根据泰勒公式有, f(x)=f(a)+f(θ)(xa) f ( x ) = f ( a ) + f ′ ( θ ) ( x − a ) ,把拉格朗日中值定理中的 b 换成 x ,那么拉格朗日中值定理根本就是 N=0 时的泰勒公式。
结合拉格朗日中值定理,我们来看看 N=0 的时候,泰勒公式的几何意义:
这里写图片描述
当 N=0 的时候,泰勒公式几何意义很好理解,那么 N=1,2, N = 1 , 2 , ⋯ 呢?
这个问题我是这么理解的:首先让我们去想象高阶导数的几何意义,一阶是斜率,二阶是曲率,三阶四阶已经没有明显的几何意义了,或许,高阶导数的几何意义不是在三维空间里面呈现的,穿过更高维的时空才能俯视它的含义。现在的我们只是通过代数证明,发现了高维投射到我们平面上的秘密。
还可以这么来思考泰勒公式,泰勒公式让我们可以通过一个点来窥视整个函数的发展,为什么呢?
因为点的发展趋势蕴含在导数之中,而导数的发展趋势蕴含在二阶导数之中……四不四很有道理啊?

5.泰勒公式是怎么推导的?

很多同学看到这段时,可能有点看不懂,我在牛顿插值的几何解释是怎么样的? - 知乎,这个回答里尝试重新作答了。
根据“以直代曲、化整为零”的数学思想,产生了泰勒公式。
这里写图片描述
如上图,把曲线等分为 n 份,分别为 a1a2an a 1 , a 2 , ⋯ , a n , a1=aa2=a+Δxan=a+(n1)Δx a 1 = a , a 2 = a + Δ x , ⋯ , a n = a + ( n − 1 ) Δ x 。我们可以推出( Δ2Δ3 Δ 2 , Δ 3 可以认为是二阶、三阶微分,其准确的数学用语是差分,和微分相比,一个是有限量,一个是极限量):
f(a2)=f(a+Δx)=f(a)+Δf(x) f ( a 2 ) = f ( a + Δ x ) = f ( a ) + Δ f ( x )
f(a3)=f(a+2Δx)=f(a+Δx)+Δf(a+Δx)=f(a)+2Δf(x)+Δ2f(x) f ( a 3 ) = f ( a + 2 Δ x ) = f ( a + Δ x ) + Δ f ( a + Δ x ) = f ( a ) + 2 Δ f ( x ) + Δ 2 f ( x )
f(a4)=f(a+3Δx)=f(a)+4Δf(x)+6Δ2f(x)+4Δ3f(x)+Δ4f(x) f ( a 4 ) = f ( a + 3 Δ x ) = f ( a ) + 4 Δ f ( x ) + 6 Δ 2 f ( x ) + 4 Δ 3 f ( x ) + Δ 4 f ( x )
也就是说,f(x)全部可以由 a 和 \Delta x 决定,这个就是泰勒公式提出的基本思想。据此的思想,加上极限 \Delta x \to 0 ,就可以推出泰勒公式。

6.泰勒公式的用处

多项式这种函数是我们可以亲近的函数,它们很开放、很坦白,心里想什么就说什么,比如 f(x)=23x f ( x ) = 2 − 3 x ,这个多项式会告诉我们想问的任何消息,甚至更多,譬如,我们问:“嘿,老兄,你在4那点的值是多少?”这时 f(x) 会毫不犹豫的回答:“你把4代进来,就会得到 23×4=10 2 − 3 × 4 = − 10 ,顺便告诉你,我最近长了奇怪的疹子,痒的要命,还好这两天症状减轻了…”。但是 ln(x) 阴暗、多疑,要是问它:“嗨,你在3的值是多少啊?”你得到的答案可能是:“你要干什么?为什么打听别人的私事?你以为凭着你那点加减乘除的三脚猫功夫就可以查出我的底细?况且我在3的值是多少,干你什么事!”—-《微积分之倚天宝剑》
泰勒公式最直接的一个应用就是用于计算,计算机一般都是把 sin(x) 进行泰勒展开进行计算的。
泰勒公式还可以把问题简化,比如计算, limx0sin(x)x lim x → 0 s i n ( x ) x ,代入 sin(x) 的泰勒展开有: limx0sin(x)x=limx0x+o(x3)x=1 lim x → 0 s i n ( x ) x = lim x → 0 x + o ( x 3 ) x = 1 ,其中其中 o(x3) o ( x 3 ) 是泰勒公式里面的余项,是高阶无穷小, limx0o(x3)=0 lim x → 0 o ( x 3 ) = 0
泰勒公式求高:
这里写图片描述
以上内容转自:
https://www.zhihu.com/question/21149770/answer/111173412

这篇关于泰勒级数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/525323

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技