09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

2023-12-22 15:52

本文主要是介绍09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

参考:

论文地址:https://proceedings.mlr.press/v48/wangf16.pdf

LunarLander复现:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

0、实践背景

gym的LunarLander是一个用于强化学习的经典环境。在这个环境中,智能体(agent)需要控制一个航天器在月球表面上着陆。航天器的动作包括向上推进、不进行任何操作、向左推进或向右推进。环境的状态包括航天器的位置、速度、方向、是否接触到地面或月球上空等。

智能体的任务是在一定的时间内通过选择正确的动作使航天器安全着陆,并且尽可能地消耗较少的燃料。如果航天器着陆时速度过快或者与地面碰撞,任务就会失败。智能体需要通过不断地尝试和学习来选择最优的动作序列,以完成这个任务。

下面是训练的结果:
在这里插入图片描述

2、Dueling DQN实现原理

2.1 Dueling DQN基本知识

Dueling Deep Q Network(Dueling DQN)是对DQN算法的改进,有效提升了算法的性能。如果对DQN还不了解的话可以先参考:07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

简单回顾一下DQN的基本知识,DQN的输出依赖于Q网络,其输出实际上是动作价值函数,该函数的维度等于动作空间的维度,就是你能执行的动作的数量。例如,动作价值函数的输出是[0.1,0.2,0.3],我可以执行的动作是【上、左、右】,那么显而易见,执行右动作所获得的动作价值最高,那么我们所执行的动作应该是(如果贪心策略的话)。

Dueling DQN是在DQN的基础上进行改进,其输出包含两个部分,分别是状态价值和动作优势。
显然,状态价值用于衡量当前状态的优劣,其实际上是一个数(标量),而动作优势函数的维度等于动作空间的维度,代表执行每个动作能带来多大的相对优势

动作优势函数的和为0,因此其实际上是一个相对值,表示某个动作相对其均值(所有动作价值的均值)能够带来多大的优势。

DQN和Dueling DQN的网络结构如下所示,可以看到Dueling DQN输出包含两个部分,将动作优势和其状态价值求和就是原来的动作价值函数Q(动作价值函数Q就是经典DQN的输出)。

更深入一点,状态价值函数V实际上就是动作价值函数Q的期望,也可以简单理解为状态价值函数是Q的均值: V π ( s t ) = E [ Q π ( s t , A ) ] V_{\pi}(s_{t})=E\left[Q_{\pi}(s_{t},A)\right] Vπ(st)=E[Qπ(st,A)]。由此,Dueling DQN实际上是把输出拆成了两部分,一部分是Q的均值mean(Q),一部分是Q-mean(Q)的部分,两部分的和就是Q函数,与DQN一致。
在这里插入图片描述

2.2 Dueling DQN能够带来性能提升的简单直觉

将原来的动作价值函数Q,拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q)有什么好处呢?在此举例:

存在一种情况,无论你采取任何动作,对结果的影响可能都并不关键。

例如,朱元璋开局一个碗,到发家致富建立大明,必然是发奋刻苦,抓住实际,因此,他的每一个动作的选择都至关重要,会对他的未来造成很大的影响。再例如,我开局10个亿,我每天吃吃喝喝,干啥都能享受生活,反正那么多米一辈子也用不完嘞。这种情况下,我采取什么动作已经不是很重要了,毕竟开局就在罗马。

因此,将原来的动作价值函数拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q),是合理的,可以分辨当前的动作优势是自身动作带来的还是当前环境带来的,这样各司其职,效果也会更好。

关于“分辨当前的动作优势是自身动作带来的还是当前环境带来的”,还有一个方便读者理解的例子,例如我一届书生,进京赶考,考取功名当官了,那这种情况我获得的奖励大概来自自身的动作;但是如果我是宰相的儿子,也当官了,可能当前环境(我的爸爸是宰相)所造成的优势会更大一点。

3 Dueling DQN的代码实现

基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)已经给出了DQN的全部实现代码,Dueling DQN只是在网络构建上有所不同。Dueling DQN的网络构建代码如下所示:

def GenModelDuelingDQN(num_actions, input_dims, fc1, fc2, fc3):# define inputinput_node = tf.keras.Input(shape=input_dims)input_layer = input_node# define state value function(计算状态价值函数)state_value = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)state_value = tf.keras.layers.Dense(1, activation='linear')(state_value)# state value and action value need to have the same shape for adding# 这里是进行统一维度的state_value = tf.keras.layers.Lambda(lambda s: tf.keras.backend.expand_dims(s[:, 0], axis=-1),output_shape=(input_dims,))(state_value)# define acion advantage (行为优势)action_advantage = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)action_advantage = tf.keras.layers.Dense(fc2, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(fc3, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(num_actions, activation='linear')(action_advantage)# See Dueling_DQN Paperaction_advantage = tf.keras.layers.Lambda(lambda a: a[:, :] - tf.keras.backend.mean(a[:, :], keepdims=True),output_shape=(num_actions,))(action_advantage)# 相加Q = tf.keras.layers.add([state_value, action_advantage])# define modelmodel = tf.keras.Model(inputs=input_node, outputs=Q)return model

其中,使用tf.keras.layers.Lambda自定义网络层,lambda a: a[:, :] - tf.keras.backend.mean(a[:, :]就是实现动作优势函数的关键。但是,最终输出的还是Q,要把动作优势函数和状态函数两部分加起来。因此,其在训练过程中和DQN没有什么不同。

4 Dueling DQN效果

对于LunarLander登陆器这个环境,Dueling DQN没有带来非常明显的改善,也有可能是因为我没有调参数。

在这里插入图片描述

这篇关于09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524552

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数