09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

2023-12-22 15:52

本文主要是介绍09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

参考:

论文地址:https://proceedings.mlr.press/v48/wangf16.pdf

LunarLander复现:
07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

08、基于LunarLander登陆器的DDQN强化学习(含PYTHON工程)

09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)

0、实践背景

gym的LunarLander是一个用于强化学习的经典环境。在这个环境中,智能体(agent)需要控制一个航天器在月球表面上着陆。航天器的动作包括向上推进、不进行任何操作、向左推进或向右推进。环境的状态包括航天器的位置、速度、方向、是否接触到地面或月球上空等。

智能体的任务是在一定的时间内通过选择正确的动作使航天器安全着陆,并且尽可能地消耗较少的燃料。如果航天器着陆时速度过快或者与地面碰撞,任务就会失败。智能体需要通过不断地尝试和学习来选择最优的动作序列,以完成这个任务。

下面是训练的结果:
在这里插入图片描述

2、Dueling DQN实现原理

2.1 Dueling DQN基本知识

Dueling Deep Q Network(Dueling DQN)是对DQN算法的改进,有效提升了算法的性能。如果对DQN还不了解的话可以先参考:07、基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)

简单回顾一下DQN的基本知识,DQN的输出依赖于Q网络,其输出实际上是动作价值函数,该函数的维度等于动作空间的维度,就是你能执行的动作的数量。例如,动作价值函数的输出是[0.1,0.2,0.3],我可以执行的动作是【上、左、右】,那么显而易见,执行右动作所获得的动作价值最高,那么我们所执行的动作应该是(如果贪心策略的话)。

Dueling DQN是在DQN的基础上进行改进,其输出包含两个部分,分别是状态价值和动作优势。
显然,状态价值用于衡量当前状态的优劣,其实际上是一个数(标量),而动作优势函数的维度等于动作空间的维度,代表执行每个动作能带来多大的相对优势

动作优势函数的和为0,因此其实际上是一个相对值,表示某个动作相对其均值(所有动作价值的均值)能够带来多大的优势。

DQN和Dueling DQN的网络结构如下所示,可以看到Dueling DQN输出包含两个部分,将动作优势和其状态价值求和就是原来的动作价值函数Q(动作价值函数Q就是经典DQN的输出)。

更深入一点,状态价值函数V实际上就是动作价值函数Q的期望,也可以简单理解为状态价值函数是Q的均值: V π ( s t ) = E [ Q π ( s t , A ) ] V_{\pi}(s_{t})=E\left[Q_{\pi}(s_{t},A)\right] Vπ(st)=E[Qπ(st,A)]。由此,Dueling DQN实际上是把输出拆成了两部分,一部分是Q的均值mean(Q),一部分是Q-mean(Q)的部分,两部分的和就是Q函数,与DQN一致。
在这里插入图片描述

2.2 Dueling DQN能够带来性能提升的简单直觉

将原来的动作价值函数Q,拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q)有什么好处呢?在此举例:

存在一种情况,无论你采取任何动作,对结果的影响可能都并不关键。

例如,朱元璋开局一个碗,到发家致富建立大明,必然是发奋刻苦,抓住实际,因此,他的每一个动作的选择都至关重要,会对他的未来造成很大的影响。再例如,我开局10个亿,我每天吃吃喝喝,干啥都能享受生活,反正那么多米一辈子也用不完嘞。这种情况下,我采取什么动作已经不是很重要了,毕竟开局就在罗马。

因此,将原来的动作价值函数拆分为状态价值函数mean(Q)和动作优势函数Q-mean(Q),是合理的,可以分辨当前的动作优势是自身动作带来的还是当前环境带来的,这样各司其职,效果也会更好。

关于“分辨当前的动作优势是自身动作带来的还是当前环境带来的”,还有一个方便读者理解的例子,例如我一届书生,进京赶考,考取功名当官了,那这种情况我获得的奖励大概来自自身的动作;但是如果我是宰相的儿子,也当官了,可能当前环境(我的爸爸是宰相)所造成的优势会更大一点。

3 Dueling DQN的代码实现

基于LunarLander登陆器的DQN强化学习案例(含PYTHON工程)已经给出了DQN的全部实现代码,Dueling DQN只是在网络构建上有所不同。Dueling DQN的网络构建代码如下所示:

def GenModelDuelingDQN(num_actions, input_dims, fc1, fc2, fc3):# define inputinput_node = tf.keras.Input(shape=input_dims)input_layer = input_node# define state value function(计算状态价值函数)state_value = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)state_value = tf.keras.layers.Dense(1, activation='linear')(state_value)# state value and action value need to have the same shape for adding# 这里是进行统一维度的state_value = tf.keras.layers.Lambda(lambda s: tf.keras.backend.expand_dims(s[:, 0], axis=-1),output_shape=(input_dims,))(state_value)# define acion advantage (行为优势)action_advantage = tf.keras.layers.Dense(fc1, activation='relu')(input_layer)action_advantage = tf.keras.layers.Dense(fc2, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(fc3, activation='relu')(action_advantage)action_advantage = tf.keras.layers.Dense(num_actions, activation='linear')(action_advantage)# See Dueling_DQN Paperaction_advantage = tf.keras.layers.Lambda(lambda a: a[:, :] - tf.keras.backend.mean(a[:, :], keepdims=True),output_shape=(num_actions,))(action_advantage)# 相加Q = tf.keras.layers.add([state_value, action_advantage])# define modelmodel = tf.keras.Model(inputs=input_node, outputs=Q)return model

其中,使用tf.keras.layers.Lambda自定义网络层,lambda a: a[:, :] - tf.keras.backend.mean(a[:, :]就是实现动作优势函数的关键。但是,最终输出的还是Q,要把动作优势函数和状态函数两部分加起来。因此,其在训练过程中和DQN没有什么不同。

4 Dueling DQN效果

对于LunarLander登陆器这个环境,Dueling DQN没有带来非常明显的改善,也有可能是因为我没有调参数。

在这里插入图片描述

这篇关于09、基于LunarLander登陆器的Dueling DQN强化学习(含PYTHON工程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524552

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四