DC report_timing 报告分析(STA)

2023-12-22 14:18
文章标签 分析 报告 dc sta report timing

本文主要是介绍DC report_timing 报告分析(STA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每一个path都有专属的slack,slack值可以是正,0或者负。某一个path拥有最坏的slack的话则称之为 critical path

critical path拥有最大的负slack值。若是所有的path都没有时序违规,则slack都是正数,此时最小的那个slack则是critical path。

负数critical paths意味着某一组的path都是critical path。

路径可以被分组(group)来得到各自的时序分析,时序报告和优化。

【时序报告】示例
Startpoint: I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_(rising edge-triggered flip-flop clocked by SYS_2x_CLK)
Endpoint: I_RISC_CORE/I_ALU/Zro_Flag_reg(rising edge-triggered flip-flop clocked by SYS_2x_CLK)
Path Group: SYS_2x_CLK
Path Type: maxPoint                                                 Incr                Path
----------------------------------------------------------------------------------
clock SYS_2x_CLK (rise edge)                          0.00                0.00
clock network delay (propagated)                      0.51                0.51
I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/CP (senrq1) 0.00                0.51 r
I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/Q (senrq1)  0.62                1.13 f
I_RISC_CORE/I_INSTRN_LAT/Instrn_1[27] (INSTRN_LAT)    0.00                1.13 f
I_RISC_CORE/I_ALU/ALU_OP[3] (ALU)                     0.00                1.13 f
I_RISC_CORE/I_ALU/U288/ZN (nr03d0)                    0.36 *              1.49 r
I_RISC_CORE/I_ALU/U261/ZN (nd03d0)                    0.94 *              2.43 f
I_RISC_CORE/I_ALU/U307/ZN (invbd2)                    0.35 *              2.78 r
I_RISC_CORE/I_ALU/U343/Z (an02d1)                     0.16 *              2.93 r
I_RISC_CORE/I_ALU/U344/ZN (nr02d0)                    0.11 *              3.04 f
I_RISC_CORE/I_ALU/U348/ZN (nd03d0)                    0.28 *              3.32 r
I_RISC_CORE/I_ALU/U355/ZN (nr03d0)                    0.29 *              3.60 f
I_RISC_CORE/I_ALU/U38/Z (an02d1)                      0.15 *              3.75 f
I_RISC_CORE/I_ALU/U40/Z (an02d1)                      0.12 *              3.87 f
I_RISC_CORE/I_ALU/U48/ZN (nd02d1)                     0.06 *              3.93 r
I_RISC_CORE/I_ALU/U27/ZN (nd02d1)                     0.06 *              3.99 f
I_RISC_CORE/I_ALU/Zro_Flag_reg/D (secrq4)             0.00 *              3.99 f
data arrival time                                                         3.99clock SYS_2x_CLK (rise edge)                          4.00                4.00
clock network delay (propagated)                      0.47                4.47
clock uncertainty                                    -0.10                4.37
I_RISC_CORE/I_ALU/Zro_Flag_reg/CP (secrq4)            0.00                4.37 r
library setup time                                   -0.37                4.00
data required time                                                        4.00
--------------------------------------------------------------------------------
data required time                                                        4.00
data arrival time                                 -3.99
-------------------------------------------------------------------------------
slack (MET)                                     0.01

报告开始显示了路径的起点,路径终点,路径组名和路径检测的类型。此例中,路径检测类型为max,意味着最大的延时或者setup check,若是min则是最小的延时或者hold check

下面一个大表显示了从起点到终点之间的一个个点的延时值。纵列有三个标识, Point, Incr和 Path,分别表示了路径中的各个点,此点所需要的延时和从起点一直累积到此点的延时值。(一般是6列:point、fanout扇出值、trans传输延时、incr器件延时、path、attributes延时类型)

星号(*)表示了使用了SDF文件中的延时值,r和f表示 上升或者下降沿。

标准延迟文件SDF:主要包含了网表中所有器件的延迟信息,用于时序仿真;通常情况下,在仿真过程中会使用由PT报出的sdf,因为PT会结合后端工具,生成延迟更为精确的sdf文件。

之前说过路径由数据载入的时钟沿开始,到device的数据输入端结束。表中的data arrival time表示了从载入时钟沿到终点数据到达所经历的时间。

再用required time减去arrival time 则得到了slack值。

例子中显示的slack非常小,意味着时序约束很勉强的达到要求。若是负数则需要改变设计来修复此violation,例如使用更大的drive strenth的driver来减少net delay。

反过来说,若是slack值相当大,则说明了此路径还有很多优化的机会。例如换成更小更慢的driver来减少面积,或者更高阈值的driver来减少leakage power。

【另外报告详细解说】

Design Compiler中,常用report_timing命令来报告设计的时序是否满足目标(Check_timing:检查约束是不是完整的,在综合之前查看,要注意不要与这个混淆)。

时间报告有四个主要部分:

·第一部分是路径信息部分,如下所示:
在这里插入图片描述

主要报告了工作条件,使用的工艺库,时序路径的起点和终点,路径所属的时钟组,报告的信息是作建立或保持的检查,以及所用的线负载模型。

·第二部分是路径延迟部分,

这个路径延迟部分是DC计算得到的实际延迟信息;命令执行后,对于下图中的路径,得到的一些路径信息,有了单元名称(point),通过该单元的延时(Incr),经过这个单元后路径的总延时等信息:
在这里插入图片描述

上图的解释:

路径的起点是上一级D触发器的的时钟端。

input external delay:(由于上一级D触发器的翻转(路径的起点也就这里)、芯片外部组合逻辑而经历的)输入延时约束(set_input_delay),也就是数据到达芯片的数据输入管脚的延时建模,这个延时是1ns;”r”表示上升延时,”f”表示下降延时

clock network delay(idle):时钟信号从芯片的端口到内部第一个寄存器的延时是0.5ns;

Data1(in):芯片输入端口到芯片内部真正数据输入端之间的线延时,是0.04ns。(可以认为是管脚的延时)

U2/y : 这里,前面0.12表示u2这个器件的翻转/传输延时,意思是从这个器件的数据输入端(包括连线),到输出端y的延时是0.12ns。后面的1.66的意思是从路径起点到u2的y输出的延时是1.66ns.

最后u4/D:这里就是终点了,D触发器的数据输入端;当然终点也可能是芯片的输出端口。

报告中,小数点后默认的位数是二,如果要增加有效数(字),在用report_timing命令时,加上命令选项“-significant_digits"。报告中,Inc:是连线延迟和其后面的单元延迟相加的结果。如要分别报告连线延迟和单元延迟,在使用report_timing命令时,加上命令选项"-input_pins"。

·第三部分是路径要求部分,如下图所示:
在这里插入图片描述

这个路径要求部分是我们约束所要求的部分;值-0. 06从库中查出,其绝对值是寄存器的建立时间。值2.17为时间周期加上延时减去时钟偏斜值再减寄存器的建立时间(假设本例中的时钟周期是2 ns)。

·第四部分是时间总结部分,如下图所示:
在这里插入图片描述

DC得到实际数据到达的时间和我们要求的时间后,进行比较。数据要求2.17ns前到达(也就是数据延时要求不得大于2.17ns),DC经过计算得到实际到达时间是2.15ns,因此时序满足要求,也就是met,而不是时序违规(violation)。时间冗余(Timing margin),又称slack,如果为正数或‘0’,表示满足时间目标。如果为负数,表示没有满足时间目标。这时,设计违反了约束(constraint violation)。

(2)timing_report的选项与debug

在进行静态时序分析时,report_timing是常用的一个命令,该命令有很多选项,如下所示(具体可以通过man进行查看):
在这里插入图片描述

我们可用report_timing的结果来查看设计的时序是否收敛,即设计能否满足时序的要求。我们也可以用其结果来诊断设计中的时序问题,对于下面的报告,
在这里插入图片描述

外部的输入延迟为22 ns,对于时钟周期为30 ns的设计,显然是太大了。设计中,关键路径通过6个缓冲器,需要考虑这些缓冲器是否真的需要;OR单元的延迟为10. 72ns,似乎有问题。关键路径通过四个层次划分模块,从模块u_proc,经模块u_proc/u_dcl,经模块u_proc/u_ctl,到模块u_int。前面我们说过,DC在对整个电路做综合时,必须保留每个模块的端口。因此,逻辑综合不能穿越模块边界,相邻模块的组合逻辑并不能合并。这4个层次划分模块使得DC不能充分使用组合电路的优化算法对电路进行时序优化,是否考虑需要进行模块的重新划分。

(3)设计违规检查:
在这里插入图片描述

当然有时候并不是真正的设计违规,有可能是约束设计过紧,有可能是设计的输入延时太紧导致violation,比如前面那个实战中,综合得到的结果是可以满足要求的,但是由于约束不当而导致DC爆出违规。

(4)查看分组优化结果:
在这里插入图片描述

主要是查看路径分组之后,路径的时序情况是什么样的,如下所示:

这篇关于DC report_timing 报告分析(STA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524257

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1