DC report_timing 报告分析(STA)

2023-12-22 14:18
文章标签 分析 报告 dc sta report timing

本文主要是介绍DC report_timing 报告分析(STA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每一个path都有专属的slack,slack值可以是正,0或者负。某一个path拥有最坏的slack的话则称之为 critical path

critical path拥有最大的负slack值。若是所有的path都没有时序违规,则slack都是正数,此时最小的那个slack则是critical path。

负数critical paths意味着某一组的path都是critical path。

路径可以被分组(group)来得到各自的时序分析,时序报告和优化。

【时序报告】示例
Startpoint: I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_(rising edge-triggered flip-flop clocked by SYS_2x_CLK)
Endpoint: I_RISC_CORE/I_ALU/Zro_Flag_reg(rising edge-triggered flip-flop clocked by SYS_2x_CLK)
Path Group: SYS_2x_CLK
Path Type: maxPoint                                                 Incr                Path
----------------------------------------------------------------------------------
clock SYS_2x_CLK (rise edge)                          0.00                0.00
clock network delay (propagated)                      0.51                0.51
I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/CP (senrq1) 0.00                0.51 r
I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/Q (senrq1)  0.62                1.13 f
I_RISC_CORE/I_INSTRN_LAT/Instrn_1[27] (INSTRN_LAT)    0.00                1.13 f
I_RISC_CORE/I_ALU/ALU_OP[3] (ALU)                     0.00                1.13 f
I_RISC_CORE/I_ALU/U288/ZN (nr03d0)                    0.36 *              1.49 r
I_RISC_CORE/I_ALU/U261/ZN (nd03d0)                    0.94 *              2.43 f
I_RISC_CORE/I_ALU/U307/ZN (invbd2)                    0.35 *              2.78 r
I_RISC_CORE/I_ALU/U343/Z (an02d1)                     0.16 *              2.93 r
I_RISC_CORE/I_ALU/U344/ZN (nr02d0)                    0.11 *              3.04 f
I_RISC_CORE/I_ALU/U348/ZN (nd03d0)                    0.28 *              3.32 r
I_RISC_CORE/I_ALU/U355/ZN (nr03d0)                    0.29 *              3.60 f
I_RISC_CORE/I_ALU/U38/Z (an02d1)                      0.15 *              3.75 f
I_RISC_CORE/I_ALU/U40/Z (an02d1)                      0.12 *              3.87 f
I_RISC_CORE/I_ALU/U48/ZN (nd02d1)                     0.06 *              3.93 r
I_RISC_CORE/I_ALU/U27/ZN (nd02d1)                     0.06 *              3.99 f
I_RISC_CORE/I_ALU/Zro_Flag_reg/D (secrq4)             0.00 *              3.99 f
data arrival time                                                         3.99clock SYS_2x_CLK (rise edge)                          4.00                4.00
clock network delay (propagated)                      0.47                4.47
clock uncertainty                                    -0.10                4.37
I_RISC_CORE/I_ALU/Zro_Flag_reg/CP (secrq4)            0.00                4.37 r
library setup time                                   -0.37                4.00
data required time                                                        4.00
--------------------------------------------------------------------------------
data required time                                                        4.00
data arrival time                                 -3.99
-------------------------------------------------------------------------------
slack (MET)                                     0.01

报告开始显示了路径的起点,路径终点,路径组名和路径检测的类型。此例中,路径检测类型为max,意味着最大的延时或者setup check,若是min则是最小的延时或者hold check

下面一个大表显示了从起点到终点之间的一个个点的延时值。纵列有三个标识, Point, Incr和 Path,分别表示了路径中的各个点,此点所需要的延时和从起点一直累积到此点的延时值。(一般是6列:point、fanout扇出值、trans传输延时、incr器件延时、path、attributes延时类型)

星号(*)表示了使用了SDF文件中的延时值,r和f表示 上升或者下降沿。

标准延迟文件SDF:主要包含了网表中所有器件的延迟信息,用于时序仿真;通常情况下,在仿真过程中会使用由PT报出的sdf,因为PT会结合后端工具,生成延迟更为精确的sdf文件。

之前说过路径由数据载入的时钟沿开始,到device的数据输入端结束。表中的data arrival time表示了从载入时钟沿到终点数据到达所经历的时间。

再用required time减去arrival time 则得到了slack值。

例子中显示的slack非常小,意味着时序约束很勉强的达到要求。若是负数则需要改变设计来修复此violation,例如使用更大的drive strenth的driver来减少net delay。

反过来说,若是slack值相当大,则说明了此路径还有很多优化的机会。例如换成更小更慢的driver来减少面积,或者更高阈值的driver来减少leakage power。

【另外报告详细解说】

Design Compiler中,常用report_timing命令来报告设计的时序是否满足目标(Check_timing:检查约束是不是完整的,在综合之前查看,要注意不要与这个混淆)。

时间报告有四个主要部分:

·第一部分是路径信息部分,如下所示:
在这里插入图片描述

主要报告了工作条件,使用的工艺库,时序路径的起点和终点,路径所属的时钟组,报告的信息是作建立或保持的检查,以及所用的线负载模型。

·第二部分是路径延迟部分,

这个路径延迟部分是DC计算得到的实际延迟信息;命令执行后,对于下图中的路径,得到的一些路径信息,有了单元名称(point),通过该单元的延时(Incr),经过这个单元后路径的总延时等信息:
在这里插入图片描述

上图的解释:

路径的起点是上一级D触发器的的时钟端。

input external delay:(由于上一级D触发器的翻转(路径的起点也就这里)、芯片外部组合逻辑而经历的)输入延时约束(set_input_delay),也就是数据到达芯片的数据输入管脚的延时建模,这个延时是1ns;”r”表示上升延时,”f”表示下降延时

clock network delay(idle):时钟信号从芯片的端口到内部第一个寄存器的延时是0.5ns;

Data1(in):芯片输入端口到芯片内部真正数据输入端之间的线延时,是0.04ns。(可以认为是管脚的延时)

U2/y : 这里,前面0.12表示u2这个器件的翻转/传输延时,意思是从这个器件的数据输入端(包括连线),到输出端y的延时是0.12ns。后面的1.66的意思是从路径起点到u2的y输出的延时是1.66ns.

最后u4/D:这里就是终点了,D触发器的数据输入端;当然终点也可能是芯片的输出端口。

报告中,小数点后默认的位数是二,如果要增加有效数(字),在用report_timing命令时,加上命令选项“-significant_digits"。报告中,Inc:是连线延迟和其后面的单元延迟相加的结果。如要分别报告连线延迟和单元延迟,在使用report_timing命令时,加上命令选项"-input_pins"。

·第三部分是路径要求部分,如下图所示:
在这里插入图片描述

这个路径要求部分是我们约束所要求的部分;值-0. 06从库中查出,其绝对值是寄存器的建立时间。值2.17为时间周期加上延时减去时钟偏斜值再减寄存器的建立时间(假设本例中的时钟周期是2 ns)。

·第四部分是时间总结部分,如下图所示:
在这里插入图片描述

DC得到实际数据到达的时间和我们要求的时间后,进行比较。数据要求2.17ns前到达(也就是数据延时要求不得大于2.17ns),DC经过计算得到实际到达时间是2.15ns,因此时序满足要求,也就是met,而不是时序违规(violation)。时间冗余(Timing margin),又称slack,如果为正数或‘0’,表示满足时间目标。如果为负数,表示没有满足时间目标。这时,设计违反了约束(constraint violation)。

(2)timing_report的选项与debug

在进行静态时序分析时,report_timing是常用的一个命令,该命令有很多选项,如下所示(具体可以通过man进行查看):
在这里插入图片描述

我们可用report_timing的结果来查看设计的时序是否收敛,即设计能否满足时序的要求。我们也可以用其结果来诊断设计中的时序问题,对于下面的报告,
在这里插入图片描述

外部的输入延迟为22 ns,对于时钟周期为30 ns的设计,显然是太大了。设计中,关键路径通过6个缓冲器,需要考虑这些缓冲器是否真的需要;OR单元的延迟为10. 72ns,似乎有问题。关键路径通过四个层次划分模块,从模块u_proc,经模块u_proc/u_dcl,经模块u_proc/u_ctl,到模块u_int。前面我们说过,DC在对整个电路做综合时,必须保留每个模块的端口。因此,逻辑综合不能穿越模块边界,相邻模块的组合逻辑并不能合并。这4个层次划分模块使得DC不能充分使用组合电路的优化算法对电路进行时序优化,是否考虑需要进行模块的重新划分。

(3)设计违规检查:
在这里插入图片描述

当然有时候并不是真正的设计违规,有可能是约束设计过紧,有可能是设计的输入延时太紧导致violation,比如前面那个实战中,综合得到的结果是可以满足要求的,但是由于约束不当而导致DC爆出违规。

(4)查看分组优化结果:
在这里插入图片描述

主要是查看路径分组之后,路径的时序情况是什么样的,如下所示:

这篇关于DC report_timing 报告分析(STA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524257

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3