分库分表下非拆分键的查询方案

2023-12-22 13:32

本文主要是介绍分库分表下非拆分键的查询方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分库分表下非拆分键的查询方案

在现有的互联网业务模式下,数据库分库分表已经成为解决数据库瓶颈的一个普遍的解决方案。但是分库分表在带来解决方案的同时,也产生了一些新的问题。

一、分库分表带来的问题

1.事务支持

​ 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

2.复杂查询

​ 分库分表后将无法进行join操作,查询禁止不带切分的维度的查询,即使中间件可以支持这种查询,可以在内存中组装,但是这种需求往往不应该在在线库查询,或者可以通过其他方法转换到切分的维度来实现。

​ 在订单数据的分库分表场景,按照订单id取模虽然很好地满足了订单数据均匀地保存在数据库中,但在买家查看自己订单的业务场景中,就出现了全表扫描的情况,而且买家查看自己订单的请求是非常频繁的,必然给数据库带来扩展和性能的问题,有违“尽量减少事务边界”这一原则,这就需要有基于非拆分键的查询的方案。

二、非拆分键的查询

基于订单数据的分库分表场景,按照订单id取模虽然很好地满足了订单数据均匀地保存在数据库中,但在买家查看自己订单的业务场景中,就出现了全表扫描的情况,而且买家查看自己订单的请求是非常频繁的,必然给数据库带来扩展和性能的问题,有违“尽量减少事务边界”这一原则。

1.异构索引

针对这类场景问题,最常用的是采用“异构索引表”的方式解决,即采用异步机制将原表的每一次创建或更新,都换另一个维度保存一份完整的数据表或索引表,拿空间换时间。

也就是应用在穿件或更新一条订单ID为分库分表键的订单数据时,也会再保存一份按照买家ID为分库分表键的订单索引数据,其结果就是同一买家的所有订单索引表都保存在同一数据库中,这就是给订单创建了异构索引表。

基于订单索引表查询买家订单

这时再来看看买家test1在获取订单信息进行页面展示时,应用对于数据库的访问流程就发生了如下图的变化。

在有了订单索引表后

  • 首先到订单索引表中搜索出test1的所有订单索引表(步骤1)
  • 因为步骤2的sql请求中带了以buyer_id的分库分表键,所以一次是效率最高的单库访问,
  • 获取到了买家test1的所有订单索引表列表并由DRDS返回到前端应用(步骤3和4)
  • 应用在拿到返回的索引列表后,获取到订单id列表(1,5,8)
  • 再发送一次获取真正订单列表的请求(步骤5)
  • 同样在步骤6的sql语句的条件中带了分库分表键order_id的列表值,所以DRDS可以精确地将此SQL请求发送到对应订单id的数据库中,而不会出现全表扫描的情况。最终通过两次访问效率最高的sql请求代替了之前的需要进行全表扫描的问题。

优化方案

这里给大家介绍的是目前阿里内部使用的方式,命名为精卫(精卫填海)。精卫是一个基于Mysql的实时数据复制框架,也可以认为是一个Mysql的数据触发器+分发管道。

精卫通过抽取器(Extractor)获取到订单数据创建在Mysql数据库中产生的binlog日志,并转换为event对象,然后通过过滤器Filter(比如字段过滤、转换等)或基于接口自定义开发的过滤对event对象中的数据进行处理,最终对分发器Applier将结果转换为发给DRDS的sql语句。通过精卫实现异构索引数据的过程如图

在这里插入图片描述

2.RANGE_HASH 即复合索引

range_hash有以下特性

  • 拆分键的类型必须是字符类型或数字类型
  • 根据任一拆分键后 N 位计算哈希值,然后再按分库数去取余,完成路由计算。N 为函数第三个参数。例如:RANGE_HASH(COL1, COL2, N) ,计算时会优先选择 COL1,截取其后N位进行计算。 COL1 不存在时找 COL2。
  • 适合于需要有两个拆分键,并且查询时仅有其中一个拆分键值的场景。
  • 两个拆分键皆不能修改。
  • 插入数据时如果发现两个拆分键指向不同的分库或分表时,插入会失败。

针对上一个例子,使用这个功能就可以解决问题。可以这样设计订单表,拆分键选择 user_id & order_id,在 order_id 中冗余 user_id 后 N 位。这样使用 RANGE_HASH(user_id, order_id, N) 功能即可以实现仅使用 user_id 或 order_id 条件就可以快速查询所需要的数据。因为同一个user_id的后N位是一样的,这样可以保证所有用户的订单都会保存在同一个表中,在查询时只需要根据路由信息找到这张表即可。

参考:

https://blog.csdn.net/u014231523/article/details/88096413

https://developer.aliyun.com/article/174556

这篇关于分库分表下非拆分键的查询方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524134

相关文章

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

基于Redis实现附近商铺查询功能

《基于Redis实现附近商铺查询功能》:本文主要介绍基于Redis实现-附近商铺查询功能,这个功能将使用到Redis中的GEO这种数据结构来实现,需要的朋友可以参考下... 目录基于Redis实现-附近查询1.GEO相关命令2.使用GEO来实现以下功能3.使用Java实现简China编程单的附近商铺查询4.Red

mysql递归查询语法WITH RECURSIVE的使用

《mysql递归查询语法WITHRECURSIVE的使用》本文主要介绍了mysql递归查询语法WITHRECURSIVE的使用,WITHRECURSIVE用于执行递归查询,特别适合处理层级结构或递归... 目录基本语法结构:关键部分解析:递归查询的工作流程:示例:员工与经理的层级关系解释:示例:树形结构的数

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结

MySQL 复合查询案例详解

《MySQL复合查询案例详解》:本文主要介绍MySQL复合查询案例详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录基本查询回顾多表笛卡尔积子查询与where子查询多行子查询多列子查询子查询与from总结合并查询(不太重要)union基本查询回顾查询

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包