分库分表下非拆分键的查询方案

2023-12-22 13:32

本文主要是介绍分库分表下非拆分键的查询方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分库分表下非拆分键的查询方案

在现有的互联网业务模式下,数据库分库分表已经成为解决数据库瓶颈的一个普遍的解决方案。但是分库分表在带来解决方案的同时,也产生了一些新的问题。

一、分库分表带来的问题

1.事务支持

​ 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

2.复杂查询

​ 分库分表后将无法进行join操作,查询禁止不带切分的维度的查询,即使中间件可以支持这种查询,可以在内存中组装,但是这种需求往往不应该在在线库查询,或者可以通过其他方法转换到切分的维度来实现。

​ 在订单数据的分库分表场景,按照订单id取模虽然很好地满足了订单数据均匀地保存在数据库中,但在买家查看自己订单的业务场景中,就出现了全表扫描的情况,而且买家查看自己订单的请求是非常频繁的,必然给数据库带来扩展和性能的问题,有违“尽量减少事务边界”这一原则,这就需要有基于非拆分键的查询的方案。

二、非拆分键的查询

基于订单数据的分库分表场景,按照订单id取模虽然很好地满足了订单数据均匀地保存在数据库中,但在买家查看自己订单的业务场景中,就出现了全表扫描的情况,而且买家查看自己订单的请求是非常频繁的,必然给数据库带来扩展和性能的问题,有违“尽量减少事务边界”这一原则。

1.异构索引

针对这类场景问题,最常用的是采用“异构索引表”的方式解决,即采用异步机制将原表的每一次创建或更新,都换另一个维度保存一份完整的数据表或索引表,拿空间换时间。

也就是应用在穿件或更新一条订单ID为分库分表键的订单数据时,也会再保存一份按照买家ID为分库分表键的订单索引数据,其结果就是同一买家的所有订单索引表都保存在同一数据库中,这就是给订单创建了异构索引表。

基于订单索引表查询买家订单

这时再来看看买家test1在获取订单信息进行页面展示时,应用对于数据库的访问流程就发生了如下图的变化。

在有了订单索引表后

  • 首先到订单索引表中搜索出test1的所有订单索引表(步骤1)
  • 因为步骤2的sql请求中带了以buyer_id的分库分表键,所以一次是效率最高的单库访问,
  • 获取到了买家test1的所有订单索引表列表并由DRDS返回到前端应用(步骤3和4)
  • 应用在拿到返回的索引列表后,获取到订单id列表(1,5,8)
  • 再发送一次获取真正订单列表的请求(步骤5)
  • 同样在步骤6的sql语句的条件中带了分库分表键order_id的列表值,所以DRDS可以精确地将此SQL请求发送到对应订单id的数据库中,而不会出现全表扫描的情况。最终通过两次访问效率最高的sql请求代替了之前的需要进行全表扫描的问题。

优化方案

这里给大家介绍的是目前阿里内部使用的方式,命名为精卫(精卫填海)。精卫是一个基于Mysql的实时数据复制框架,也可以认为是一个Mysql的数据触发器+分发管道。

精卫通过抽取器(Extractor)获取到订单数据创建在Mysql数据库中产生的binlog日志,并转换为event对象,然后通过过滤器Filter(比如字段过滤、转换等)或基于接口自定义开发的过滤对event对象中的数据进行处理,最终对分发器Applier将结果转换为发给DRDS的sql语句。通过精卫实现异构索引数据的过程如图

在这里插入图片描述

2.RANGE_HASH 即复合索引

range_hash有以下特性

  • 拆分键的类型必须是字符类型或数字类型
  • 根据任一拆分键后 N 位计算哈希值,然后再按分库数去取余,完成路由计算。N 为函数第三个参数。例如:RANGE_HASH(COL1, COL2, N) ,计算时会优先选择 COL1,截取其后N位进行计算。 COL1 不存在时找 COL2。
  • 适合于需要有两个拆分键,并且查询时仅有其中一个拆分键值的场景。
  • 两个拆分键皆不能修改。
  • 插入数据时如果发现两个拆分键指向不同的分库或分表时,插入会失败。

针对上一个例子,使用这个功能就可以解决问题。可以这样设计订单表,拆分键选择 user_id & order_id,在 order_id 中冗余 user_id 后 N 位。这样使用 RANGE_HASH(user_id, order_id, N) 功能即可以实现仅使用 user_id 或 order_id 条件就可以快速查询所需要的数据。因为同一个user_id的后N位是一样的,这样可以保证所有用户的订单都会保存在同一个表中,在查询时只需要根据路由信息找到这张表即可。

参考:

https://blog.csdn.net/u014231523/article/details/88096413

https://developer.aliyun.com/article/174556

这篇关于分库分表下非拆分键的查询方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/524134

相关文章

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详