第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现

2023-12-22 12:01

本文主要是介绍第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近有偶然的机会学习了一次QPSK防止以后忘记又得找资料,这里就详细的记录一下

        基于 QPSK 的通信系统如图 1 所示,QPSK 调制是目前最常用的一种卫星数字和数 字集群信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单,在后文仅仅使用MATLAB进行模拟。

图 1 基于QOSK调制的通信系统模型

        其相位图如图 2 所示,二进制数 0 和 1 分别表示两个相位,为了提高传输速率,通 常可以采用多项调制的方法,即将待发的数字信号按两比特一组的方式组合,两位二进 制数的组合方式又四种—(00,01,10,11)。每个组合是一个双比特码,通常可以用四 个不同的相位值表示这四组双比特码。在传输过程中,相位改变一次,传输两个二进制 数。这种调相方法成为四项调相或四项调制,广泛广泛应用 于卫星链路、数字集群等 通信业务。

图2相位图

如图 3 所示,QPSK 信号可以采用正交调制器来实现 

图3 QPSK信号生成原理图

 根据图1和图3的原理图,就可以开始着手写MATLAB代码了。 我将其分为以下几个方面

  1. 模拟源信号
  2. 源信号->双极性信号
  3. 双极性信号转为QPSK信号
  4. QPSK信号经过模拟信道传输,引起失真。
  5. 采用相干解调法分离QPSK信号。
  6. 低通滤波过滤噪音
  7. 抽样判决获得信号
  8. 最后将信号极性反转获得源信号

QPSK详细代码如下,在代码中已经做好注释了。

%% 采用代码实现的4PSK通信系统仿真
% 假设在T=1,加入高斯噪声
clc;
clear all;
close all;
%% 发端
% 1.调制,生成二进制信号
bit_in = randi([0 1],1000,1); 
% 2.变为双极性码
data = -2*bit_in+1;        
% 3.串并转换模块:奇数位为I,偶数为为Q
data_I  = data(1:2:1000);   % 间断获取 I
data_Q  = data(2:2:1000);   % 间断获取 Q
data_I1=repmat(data_I',20,1);
data_Q1=repmat(data_Q',20,1);% 按列优先将data_I1中的数据存入data_I2
for i=1:1e4data_I2(i)=data_I1(i);data_Q2(i)=data_Q1(i);
end% 4.产生升余弦的基带信号
f=0:0.1:1;
xrc=0.5+0.5*cos(pi*f); data_I2_rc=conv(data_I2,xrc)/5.5;
data_Q2_rc=conv(data_Q2,xrc)/5.5;figure
subplot(2,2,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");
subplot(2,2,2)
plot(f,xrc,'black','LineWidth',2);
title("升余弦信号");
subplot(2,2,3)
plot(data_I2_rc(1:20),'black','LineWidth',2);
title("升余弦I信号");
subplot(2,2,4)
plot(data_Q2_rc(1:20),'black','LineWidth',2);
title("升余弦Q信号");% 5. 正交调制(调相法:将基带数字信号(双极性)与载波信号直接相乘的方法)
f1=1;                        % 载波频率
t1=0:0.1:1e3+0.9;I_rc=data_I2_rc.*cos(2*pi*f1*t1);
Q_rc=data_Q2_rc.*sin(2*pi*f1*t1);
x=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);figure(1)
subplot(2,1,1);
plot(t1,x,'black','LineWidth',2); xlabel('t'); ylabel('幅度'); 
grid on; 
axis([0 1/f1*10 -1.2 1.2]);  % 输出2个周期的信号
title('QPSK信号'); %% 6.仿真信道噪声
n0=rand(size(t1))/2;
y=x+n0;subplot(2,1,2);
plot(t1,y,'black','LineWidth',2); xlabel('t'); ylabel('幅度'); 
grid on; 
axis([0 1/f1*10 -2 2]);  % 输出2个周期的信号
title('带噪声的QPSK信号'); %% 仿真接收端
% 7.正交解调:只能采用相干解调
I_demo=y.*cos(2*pi*f1*t1);
Q_demo=y.*sin(2*pi*f1*t1);
% 8.低通滤波
I_recover=conv(I_demo,xrc);    
Q_recover=conv(Q_demo,xrc);
I=I_recover(11:10010);
Q=Q_recover(11:10010);% 9.抽样判决
data_recover=[];
for i=1:20:10000data_recover=[data_recover I(i:1:i+19) Q(i:1:i+19)];
end
bit_recover=[];
for i=1:20:20000if sum(data_recover(i:i+19))>0data_recover_a(i:i+19)=1;bit_recover=[bit_recover 1];elsedata_recover_a(i:i+19)=-1;bit_recover=[bit_recover -1];end
end% 10.变为单极性码
bit_recovered=(1-bit_recover)/2; 
figure(2)
subplot(2,1,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");subplot(2,1,2)
stem(bit_recovered(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("接收的消息序列");figure(3)
subplot(2,1,1)
stem(bit_in(1:20),'black','LineWidth',2);
axis([0,20,0,1]);
title("发送的消息序列");subplot(2,1,2)
stem(data(1:20),'black','LineWidth',2);
axis([0,20,-1,1]);
title("双极性码");
set(gcf,'color','w')

BSPK的代码也贴在这里

clc
clear
close all;%%初始化参数设置
data_len = 100000;                       % 原始数据长度
SNR_dB = 0:10;                           % 信噪比 dB形式
SNR = 10.^(SNR_dB/10);                   % Eb/N0
Eb = 1; % 每比特能量
N0 = Eb./SNR ; %噪声功率
error2 = zeros(1,length(SNR_dB));          % 码元错误个数
simu_ber_BPSK = zeros(1,length(SNR_dB));         % 仿真误误码率
theory_ber_BPSK = zeros(1,length(SNR_dB));   % BPSK理论误码率
demod2_signal= zeros(1,data_len);         % 解调信号%%基带信号产生
data_source = round(rand(1,data_len));  % 二进制随机序列%%BPSK基带调制   
send_signal2 = (data_source - 1/2)*2; % 双极性不归零序列 %%高斯信道无编码
for z = 1:length(SNR_dB)noise2 = sqrt(N0(z)/2) * randn(1,data_len); %高斯白噪声receive_signal2 = send_signal2 + noise2;demod_signal2 = zeros(1,data_len);for w = 1:data_lenif (receive_signal2(w) > 0)demod_signal2(w) = 1;              % 接收信号大于0  则判1elsedemod_signal2(w) = 0;              % 接收信号小于0  则判0endend%统计错误码元个数for w = 1:data_lenif(demod_signal2(w) ~=data_source(w) )error2(z) = error2(z) + 1;    % 错误比特个数endend%计算误码率simu_ber_BPSK(z) = error2(z) / data_len;         % 仿真误比特率theory_ber_BPSK(z) = qfunc(sqrt(2*SNR(z)));   % 理论误比特率
end%%二进制序列、基带信号图像
figure(1);
stem(data_source);
title("二进制随机序列");
axis([0,50,0,1]);
figure(2);
stem(send_signal2);
title("BPSK基带调制--发送信号");
axis([0,50,-1.5,1.5]);figure(4);
stem(noise2);
title("高斯白噪声");
axis([0,50,-0.5,0.5]);figure(5)
stem(receive_signal2);
title("接收信号");
axis([0,50,-1.5,1.5]);figure(7)
stem(demod_signal2);
title("解调信号");
axis([0,50,0,1]);figure(8);semilogy(SNR_dB,simu_ber_BPSK,'M-X',SNR_dB,theory_ber_BPSK,'k-s');     grid on;                                      
axis([0 10 10^-5 10^-1])                      
xlabel('Eb/N0 (dB)');                     
ylabel('BER');                                  legend('BPSK仿真误码率','BPSK理论误码率');  %%画星座图
scatterplot(send_signal2);
title('发送信号星座图');
scatterplot(receive_signal2);
title('接收信号星座图');
scatterplot(demod_signal2);
title('解码信号星座图');

MPSK代码

clc;
clear all;
close all;
%% 调用库函数实现MPSK的通信系统仿真M=4;
cycl=80;       % 运行次数
SNR=0:1:30;    % 信噪比
s=randi([0 M-1],1,1000);  % 输入信息一行1000列;BER1=zeros(cycl,length(SNR));for  n=1:cyclfor k=1:length(SNR)x=pskmod(s,M,pi/4);               % M进制PSKy=awgn(x,SNR(k),'measured');      % 在传输序列中加入噪声r=pskdemod(y,M,pi/4);             % 解调r1=reshape(r',1,[]);[num,rat]=biterr(r1,s,log2(M));           % 误码率计算BER1(n,k)=rat;end
endfigure(1)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("发送的消息序列");subplot(2,1,2)
stem(r1(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("接收的消息序列");%% 8PSK
M=8;
cycl=80;       % 运行次数
SNR=0:1:30;    % 信噪比
s=randi([0 M-1],1,1000);  % 输入信息一行1000列;BER2=zeros(cycl,length(SNR));for  n=1:cyclfor k=1:length(SNR)x=pskmod(s,M,pi/4);               % M进制PSKy=awgn(x,SNR(k),'measured');      % 在传输序列中加入噪声r=pskdemod(y,M,pi/4);             % 解调r1=reshape(r',1,[]);[num,rat]=biterr(r1,s,log2(M));           % 误码率计算BER2(n,k)=rat;end
endfigure(2)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("原始消息序列");subplot(2,1,2)
stem(r1(1:20),'black','LineWidth',2);
axis([0,20,0,M]);
title("传递消息序列");% 统计平均误码率
figure(3)BER1=mean(BER1);
subplot(2,1,1)
semilogy(SNR,BER1,'k-o','LineWidth',2);
xlabel('SNR/dB'); ylabel('BER');
title("4PSK");
grid onBER2=mean(BER2);
subplot(2,1,2)
semilogy(SNR,BER2,'k-o','LineWidth',2);
xlabel('SNR/dB'); ylabel('BER');
title("8PSK");
grid on

QAM代码也在这里

clc;
clear all;
close all;
%% 基于16QAM的通信系统仿真
% 发端
nbit=10000; 
M=16;                                              % M表示QAM调制的阶数
k=log2(M);
graycode=[0 1 3 2 4 5 7 6 12 13 15 14 8 9 11 10];  % 格雷映射编码规则
EsN0=5:20;                         % 信噪比范围
snr=10.^(EsN0/10);                 % 将db转换为线性值
% 产生16进制的消息符号
s=randi([0,1],1,nbit);         
s_reshape=reshape(s,k,nbit/k)';    % 对数据流进行分组,对于16QAM,则每4位一组
msg=bi2de(s_reshape,'left-msb');   % 转化成10进制,作为qammod的输入
% 进行格雷映射
msg1=graycode(msg+1);        
% 调制
r=qammod(msg1,M);         % 调用matlab中的qammod函数,16QAM调制方式的调用(输入0到15的数,M表示QAM调制的阶数)得到调制后符号
spow1=norm(r).^2/nbit;    % 取a+bj的模.^2得到功率除整个符号得到每个符号的平均功率
for i=1:length(EsN0)% 信道sigma=sqrt(spow1/(2*snr(i)));                          % 16QAM根据符号功率求出噪声的功率x=r+sigma*(randn(1,length(r))+1i*randn(1,length(r)));  % 16QAM混入高斯加性白噪声% 16QAM的解调y1=qamdemod(x,M);             % 格雷逆映射y2=graycode(y1+1);        % 返回译码出来的信息,十进制test=de2bi(y2,k,'left-msb');y3=reshape(test',1,nbit);[err1,ber1(i)]=biterr(s,y3); 
end
%% 绘图
figure(1)
subplot(2,1,1)
stem(s(1:20),'black','LineWidth',2);
axis([0,20,0,1.2]);
title("发送的消息序列");subplot(2,1,2)
stem(y3(1:20),'black','LineWidth',2);
axis([0,20,0,1.2]);
title("接收的消息序列");scatterplot(r);           % 调用matlab中的scatterplot函数,画星座点图
scatterplot(x);           % 调用matlab中的scatterplot函数,画rx星座点图% 16QAM调制信号在AWGN信道的性能
figure( )
semilogy(EsN0,ber1,'black','LineWidth',2);                            % ber ser比特仿真值 ser1理论误码率 ber1理论误比特率
title('16QAM调制信号在AWGN信道的性能分析');grid;
xlabel('Es/N0(dB)');                      
ylabel('误比特率');                          

这篇关于第一次记录QPSK,BSPK,MPSK,QAM—MATLAB实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/523875

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S