【源码解析】聊聊ReentrantReadWriteLock是如何实现的读写锁

2023-12-21 23:36

本文主要是介绍【源码解析】聊聊ReentrantReadWriteLock是如何实现的读写锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么需要读写锁

在并发编程领域,有多线程进行提升整体性能,但是却引入了共享数据安全性问题。基本就是无锁编程下的单线程操作,有互斥同步锁操作,但是性能不高,并且同一时刻只有一个线程可以操作资源类。但是对于大多数常见下,都是读操作多,写操作少,那么可以利用将锁的粒度进行细化,进而分化出读锁/写锁。也就是syn/ReentrantLock的升级版本ReentrantReadWriteLock。

之前一篇文章已经简单介绍过 ,本篇主要从源码角度剖析具体原理如何实现的。
聊聊ReentrantReadWriteLock锁降级和StampedLock邮戳锁

源码解析

带着三个问题去梳理

  • 读写锁是怎样实现分别记录读写锁的状态?
  • 读锁如何获取和释放锁
  • 写锁如何获取和释放锁

在这里插入图片描述
可以看到顶层通过接口定义规范,内部持有Sync实现AQS,分别实现不同的公平锁和非公平锁。
在这里插入图片描述

//读写锁的接口规范
public interface ReadWriteLock {Lock readLock();Lock writeLock();
}
// 内部持有读写锁 
public class ReentrantReadWriteLockimplements ReadWriteLock, java.io.Serializable {private static final long serialVersionUID = -6992448646407690164L;private final ReentrantReadWriteLock.ReadLock readerLock;private final ReentrantReadWriteLock.WriteLock writerLock;final Sync sync;
    public ReentrantReadWriteLock() {this(false);}

默认是非公平锁。内部通过构造方法创建两个锁,读锁和写锁。

    public ReentrantReadWriteLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();readerLock = new ReadLock(this);writerLock = new WriteLock(this);}

锁状态

看到这里其实有点懵逼,什么 这都是什么操作,其实在AQS内部通过一个变量state进行控制是否可以获取资源,但是读写锁如何要用两个变量的话,其实不太好,所以就通过高16位代表读锁的状态、低16位代表写锁的状态。

对于低16来说,值等于0没有加写锁,值等于1 加了写锁,大于1 标识写锁的重入次数。
高16来说,0 :没有加读锁, 1: 加读锁。 值大于1 不表示读锁的重入次数,表示读锁总共被获取了多少次。读锁的重入次数存储在和线程相关的地方,通过threadLocal进行存储。
在这里插入图片描述

  abstract static class Sync extends AbstractQueuedSynchronizer {private static final long serialVersionUID = 6317671515068378041L;// 偏移位数static final int SHARED_SHIFT   = 16;// 共享锁基本单位  左移16位 state+= shared_unitstatic final int SHARED_UNIT    = (1 << SHARED_SHIFT);// 读锁、写锁 可重入最大数量static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;// 获取低16位的条件static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;/** Returns the number of shared holds represented in count  */// 多少线程持有读锁static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }/** Returns the number of exclusive holds represented in count  */// 写锁 是否持有 1 为一个线程持有 2 1次冲入 1次获取写锁static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

写状态,等于 S & 0x0000FFFF(将高 16 位全部抹去)。 当写状态加1,等于S+1.
读状态,等于 S >>> 16 (无符号补 0 右移 16 位)。当读状态加1,等于 S+(1<<16),也就是S+0x00010000。

这样 我们就完成了一个state值可以同时表示两种状态的。

写锁

写锁加锁

        public void lock() {sync.acquire(1);}

调用AQS的获取

    public final void acquire(int arg) {//tryAcquire(arg) true 获取锁成功直接结束//如果没有获取到锁,acquireQueued 会将线程压入队列中//!tryAcquire(arg)  没有获取到锁,将当前线程挂起//addWaiterif (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}

ReentrantReadWriteLock内部实现了tryAcquire方法。
该方法主要的作用就是
1.获取当前线程
2.判断state的状态。 c = 0 说明当前没有读锁和写锁,通过CAS进行设置state的值 直接获取锁
3.state值不等于0,w == 0 说明当前有读锁 获取锁失败,返回
4.w != 0 说明 当前是写锁重入,所以判断是否最大值,设置state的值+1
writerShouldBlock() 方法会根据是否是公平锁进行排队处理

       protected final boolean tryAcquire(int acquires) {// 获取当前线程Thread current = Thread.currentThread();// 获取state的值int c = getState();int w = exclusiveCount(c);// c = 0 说明 当前没有读锁和写锁if (c != 0) {// w == 0 等于0 说明 说明当前有读锁  或者当前线程不等于持有锁的线程// 写读互斥if (w == 0 || current != getExclusiveOwnerThread())return false;// 获取写锁 不大于最大值if (w + exclusiveCount(acquires) > MAX_COUNT)throw new Error("Maximum lock count exceeded");// Reentrant acquire// 设置当前值 说明可重入setState(c + acquires);return true;}// 是否需要阻塞 公平锁if (writerShouldBlock() ||//CAS 设置c的值 c += 1!compareAndSetState(c, c + acquires))return false;// 设置为当前线程setExclusiveOwnerThread(current);return true;}

在这里插入图片描述

在这里插入图片描述

写锁释放锁

当当前线程执行完毕业务逻辑之后,就会释放锁。

        public void unlock() {sync.release(1);}
    public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)//唤醒阻塞等待的线程unparkSuccessor(h);return true;}return false;}

释放锁的流程主要就是
1.判断持有锁的线程是否属于当前线程,不是直接异常
2.将state-1 ,state = 0的话,说明重入的锁释放完毕。清空
3.设置state的值,可能是-1 或者 为0。

        protected final boolean tryRelease(int releases) {// 持有锁的线程 是否等于当前线程if (!isHeldExclusively())throw new IllegalMonitorStateException();// 将当前state -= 1int nextc = getState() - releases;boolean free = exclusiveCount(nextc) == 0;// 如果写锁为0 说明当前没有锁持有了if (free)// 将当前线程释放setExclusiveOwnerThread(null);// 设置state的值setState(nextc);return free;}

在这里插入图片描述

读锁

读锁加锁

        public void lock() {sync.acquireShared(1);}
    public final void acquireShared(int arg) {if (tryAcquireShared(arg) < 0)doAcquireShared(arg);}
        protected final int tryAcquireShared(int unused) {// 获取当前线程Thread current = Thread.currentThread();int c = getState();//判断是否有写锁,并且当前线程不是持有写锁线程if (exclusiveCount(c) != 0 &&getExclusiveOwnerThread() != current)return -1;// 获取读锁int r = sharedCount(c);// 是否需要阻塞if (!readerShouldBlock() &&//是否小于最大值r < MAX_COUNT &&//CAS 设置  高16位加1compareAndSetState(c, c + SHARED_UNIT)) {// 第一次获取读锁if (r == 0) {//设置第一个获取读锁的线程firstReader = current; // 当前线程//设置第一个获取读锁线程的重入数firstReaderHoldCount = 1; //} else if (firstReader == current) {// 如果当前线程是第一个获取读锁的线程,重入数++firstReaderHoldCount++;} else {//刷新除获取锁的第一个读线程的重入数// threadLocal进行记录线程重入次数HoldCounter rh = cachedHoldCounter;if (rh == null || rh.tid != getThreadId(current))cachedHoldCounter = rh = readHolds.get();else if (rh.count == 0)readHolds.set(rh);rh.count++;}return 1;}// 再次尝试获取读锁,return fullTryAcquireShared(current);}

在这里插入图片描述
从这里可以看到,支持锁降级,持有写锁的线程,可以获取读锁,但是后续要记得把读锁和写锁读释放

读锁释放锁

        public void unlock() {sync.releaseShared(1);}
    public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;}
        protected final boolean tryReleaseShared(int unused) {Thread current = Thread.currentThread();// 如果当前线程是第一个获取读锁的线程if (firstReader == current) {// 第一个获取读锁的线程 重入次数等于=1// assert firstReaderHoldCount > 0;if (firstReaderHoldCount == 1)//第一个获取读锁的线程设置为nullfirstReader = null;else// 当前线程重入多次 -1firstReaderHoldCount--;//如果不是第一个获取读锁的线程,获取该线程的锁重入次数对象} else {// 获取线程持有共享锁的数量对象HoldCounter rh = cachedHoldCounter;// 如果rh==null 当前线程不是共享锁数量对象对应的线程idif (rh == null || rh.tid != getThreadId(current))//从线程上线文获取,并覆盖rh = readHolds.get();//获取读锁重入数int count = rh.count;if (count <= 1) {readHolds.remove();if (count <= 0)throw unmatchedUnlockException();}--rh.count;}//CAS同步更新for (;;) {int c = getState();int nextc = c - SHARED_UNIT;if (compareAndSetState(c, nextc))// Releasing the read lock has no effect on readers,// but it may allow waiting writers to proceed if// both read and write locks are now free.return nextc == 0;}}

线程读锁的重入数与读锁数量是两个概念,线程读锁的重入数是每个线程获取同一个读锁的次数,读锁数量则是所有线程的读锁重入数总和。举一个例子就是 3个线程 分别获取了3次读锁,那么读锁数量就是9,每个线程的读锁重入数就是3。

锁升级&锁降级

锁升级就是线程持有读锁的前提下,去升级为写锁,显然这是违背读写互斥的。
在这里插入图片描述
锁降级,线程持有写锁的前提下,降级为读锁。
在这里插入图片描述
好了我们来看为什么需要锁降级,如果说针对一块临界区直接加一把大锁,那么其实并发读很低,那么可不可以在获取写锁的前提下 降级为读锁,这样既保证数据的一致性,又可以提升整体的并发度。锁降级就是为了结局这个问题。
在这里插入图片描述

设计思想

通过本篇的大概学习,我们了解到RRW中几个设计要点,通过一个变量去控制两个读写锁的状态,位运算的方式。值得我们借鉴,另一种就是锁降级的为了保证数据安全。以及在整体的代码实现上大量使用模板模式,AQS的子类都是相同的方式。

在这里插入图片描述

这篇关于【源码解析】聊聊ReentrantReadWriteLock是如何实现的读写锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521891

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal