pandas 用均值填充缺失值NaN —— fillna 方法解析

2023-12-21 23:32

本文主要是介绍pandas 用均值填充缺失值NaN —— fillna 方法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🥇 版权: 本文由【墨理学AI】原创、在CSDN首发、各位大佬、感谢查阅、感谢三连、感谢关注

基础参考资料


  • sklearn缺失值插补

  • sklearn官方文档

  • 官方fillna 方法文档

1


pandasfillna()方法,能够使用指定的方法填充NA/NaN值。

函数详解

函数形式:fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

参数:

value:用于填充的空值的值。

method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None。定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。

axis:轴。0或’index’,表示按行删除;1或’columns’,表示按列删除。

inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。

limit:int, default None。如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断)

downcast:dict, default is None,字典中的项为,为类型向下转换规则。或者为字符串“infer”,此时会在合适的等价类型之间进行向下转换,比如float64 to int64 if possible。

返回值:
DataFrame or None
Object with missing values filled or None if inplace=True.


  • 用均值进行填充:
for column in list(df.columns[df.isnull().sum() > 0]):mean_val = df[column].mean()df[column].fillna(mean_val, inplace=True)
  • 用后一行的值进行填充NaN
print(df.fillna(method='backfill', axis=0, inplace=False))
  • 我的测试代码如下:
import numpy as np
import pandas as pda = np.arange(100, dtype=float).reshape((10, 10))a[0, 1] = np.nan
a[0, 3] = np.nan
a[0, 4] = np.nan
a[0, 6] = np.nana[3, 1] = np.nan
a[3, 3] = np.nan
a[3, 4] = np.nan
a[3, 6] = np.nandf = pd.DataFrame(data=a)
# 重命名列名
df.columns = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']print(df)
# 筛选需要填充的列
print(df.columns[df.isnull().sum() > 0])# 用列均值进行填充NaN
for column in list(df.columns[df.isnull().sum() > 0]):mean_val = df[column].mean()df[column].fillna(mean_val, inplace=True)# 用后一行的值进行填充NaN
# print(df.fillna(method='backfill', axis=0, inplace=True))# 筛选需要填充的列  发现没有这样的列了
print(df.columns[df.isnull().sum() > 0])print(df)

9-8

这篇关于pandas 用均值填充缺失值NaN —— fillna 方法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/521878

相关文章

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD