vivado下ddr3的读写和测试详解

2023-12-21 16:40
文章标签 详解 测试 读写 vivado ddr3

本文主要是介绍vivado下ddr3的读写和测试详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近博主在根据例程做ddr3的读写测试,发现根本看不到好吧,虽然之前博主做过SDRAM的读写测试,但是ddr3更加复杂,时序写起来很吃力,所以需要用到vivado下自带的ip核。具体来看下面例化过程:

1.在ip核下搜索mig 双击打开

2.直接next  然后在当前界面修改你的ddr3ip核的名字

这里博主是因为已经例化了ip核,所以名字不能修改,然后next

3.这是要不要兼容芯片,不选,点击next

4.勾选你的存储器类型,我的是ddr3,点击next

5.

这个配置比较多,第一个时钟为ddr3实际工作的时钟,然后选择你的内存型号,数据宽度即可,点击next

6.

然后输入时钟可能需要pll倍频得到,一般是200Mhz,这里注意看下最后一行的用户地址类型,它是由bank+row+column组成的,这个在后面的读写测试会进一步提到。

7.

时钟选择不差分,然后参考时钟为用户时钟。

8.下面就是默认next,然后就是分配管脚了,这个你买的开发板一般都会提高ucf文件,直接复制就行。

然后next,生成。

以上就是ip核的简单例化过程,这个步骤网上有很多类似的,博主就不一一讲解了,把精力放在读写测试这块。

首先来看老三样:ip核用户界面下的控制命令,读和写

这是控制命令,可以让用户来发送读或者写命令,需要注意的事只有当app_rdy和app_en同为高时才有效,命令被发出。这里博主通过ila上电分析发现app_rdy为ip核自己产生的输出信号,但是它并不是一直都是高电平,所以在后续的读写测试时需要判断,至于怎么判断,我们后面代加上电分析。

上面是写命令,可以看到当add_wdf_wren和add_wdf_end同为高时数据才能有效被写进去,同时app_wdf_rdy也要为高。需要注意的一点是,写数据和写命令此时不再有关系,为什么,因为写数据其实是通过fifo缓存,当写命令有效时,由于先进先出的特性会把它所对应数据给写入,当然这个很拗口,下面会给出示例

上面的是读过程,可以看出当读命令发出后需要一个延迟读数据才会有效。

下面来看代码进行讲解:

module mem_burst
#(parameter MEM_DATA_BITS = 64,parameter ADDR_BITS = 24
)
(input rst,                                 /*复位*/input mem_clk,                               /*接口时钟*/input rd_burst_req,                          /*读请求*/input wr_burst_req,                          /*写请求*/input[9:0] rd_burst_len,                     /*读数据长度*/input[9:0] wr_burst_len,                     /*写数据长度*/input[ADDR_BITS - 1:0] rd_burst_addr,        /*读首地址*/input[ADDR_BITS - 1:0] wr_burst_addr,        /*写首地址*/output rd_burst_data_valid,                  /*读出数据有效*/output wr_burst_data_req,                    /*写数据信号*/output[MEM_DATA_BITS - 1:0] rd_burst_data,   /*读出的数据*/input[MEM_DATA_BITS - 1:0] wr_burst_data,    /*写入的数据*/output rd_burst_finish,                      /*读完成*/output wr_burst_finish,                      /*写完成*/output burst_finish,                         /*读或写完成*////output[ADDR_BITS-1:0]                       app_addr,output[2:0]                                 app_cmd,output                                      app_en,output [MEM_DATA_BITS-1:0]                  app_wdf_data,output                                      app_wdf_end,output [MEM_DATA_BITS/8-1:0]                app_wdf_mask,output                                      app_wdf_wren,input [MEM_DATA_BITS-1:0]                   app_rd_data,input                                       app_rd_data_end,input                                       app_rd_data_valid,input                                       app_rdy,input                                       app_wdf_rdy,input                                       ui_clk_sync_rst,  input                                       init_calib_complete
);assign app_wdf_mask = {MEM_DATA_BITS/8{1'b0}};localparam IDLE = 3'd0;
localparam MEM_READ = 3'd1;
localparam MEM_READ_WAIT = 3'd2;
localparam MEM_WRITE  = 3'd3;
localparam MEM_WRITE_WAIT = 3'd4;
localparam READ_END = 3'd5;
localparam WRITE_END = 3'd6;
localparam MEM_WRITE_FIRST_READ = 3'd7;/*parameter IDLE = 3'd0;
parameter MEM_READ = 3'd1;
parameter MEM_READ_WAIT = 3'd2;
parameter MEM_WRITE  = 3'd3;
parameter MEM_WRITE_WAIT = 3'd4;
parameter READ_END = 3'd5;
parameter WRITE_END = 3'd6;
parameter MEM_WRITE_FIRST_READ = 3'd7;*/
reg[2:0] state;	
reg[9:0] rd_addr_cnt;
reg[9:0] rd_data_cnt;
reg[9:0] wr_addr_cnt;
reg[9:0] wr_data_cnt;reg[2:0] app_cmd_r;
reg[ADDR_BITS-1:0] app_addr_r;
reg app_en_r;
reg app_wdf_end_r;
reg app_wdf_wren_r;
assign app_cmd = app_cmd_r;
assign app_addr = app_addr_r;
assign app_en = app_en_r;
assign app_wdf_end = app_wdf_end_r;
assign app_wdf_data = wr_burst_data;
assign app_wdf_wren = app_wdf_wren_r & app_wdf_rdy;
assign rd_burst_finish = (state == READ_END);
assign wr_burst_finish = (state == WRITE_END);
assign burst_finish = rd_burst_finish | wr_burst_finish;assign rd_burst_data = app_rd_data;
assign rd_burst_data_valid = app_rd_data_valid;assign wr_burst_data_req = (state == MEM_WRITE) & app_wdf_rdy ;always@(posedge mem_clk or posedge rst)
beginif(rst)beginapp_wdf_wren_r <= 1'b0;endelse if(app_wdf_rdy)app_wdf_wren_r <= wr_burst_data_req;
endalways@(posedge mem_clk or posedge rst)
beginif(rst)beginstate <= IDLE;app_cmd_r <= 3'b000;app_addr_r <= 0;app_en_r <= 1'b0;rd_addr_cnt <= 0;rd_data_cnt <= 0;wr_addr_cnt <= 0;wr_data_cnt <= 0;app_wdf_end_r <= 1'b0;endelse if(init_calib_complete ===  1'b1)begincase(state)IDLE:beginif(rd_burst_req)beginstate <= MEM_READ;app_cmd_r <= 3'b001;app_addr_r <= {rd_burst_addr,3'd0};app_en_r <= 1'b1;endelse if(wr_burst_req)beginstate <= MEM_WRITE;app_cmd_r <= 3'b000;app_addr_r <= {wr_burst_addr,3'd0};app_en_r <= 1'b1;wr_addr_cnt <= 0;app_wdf_end_r <= 1'b1;wr_data_cnt <= 0;endendMEM_READ:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(rd_addr_cnt == rd_burst_len - 1)beginstate <= MEM_READ_WAIT;rd_addr_cnt <= 0;app_en_r <= 1'b0;endelserd_addr_cnt <= rd_addr_cnt + 1;endif(app_rd_data_valid)begin//app_addr_r <= app_addr_r + 8;if(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_READ_WAIT:beginif(app_rd_data_valid)beginif(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_WRITE_FIRST_READ:beginapp_en_r <= 1'b1;state <= MEM_WRITE;wr_addr_cnt <= 0;endMEM_WRITE:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendif(wr_burst_data_req)begin//app_addr_r <= app_addr_r + 8;if(wr_data_cnt == wr_burst_len - 1)begin	state <= MEM_WRITE_WAIT;endelsebeginwr_data_cnt <= wr_data_cnt + 1;endendendREAD_END:state <= IDLE;MEM_WRITE_WAIT:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 'b1000;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;if(app_wdf_rdy) state <= WRITE_END;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendelse if(~app_en_r & app_wdf_rdy)state <= WRITE_END;endWRITE_END:state <= IDLE;default:state <= IDLE;endcaseend
end
endmodule

这个是黑金给的例程,一开始没看懂,搞了好几天才看懂整个细节,下面来讲解一下:首先state在IDLE状态,当wr_burst_req有效时进入MEM_WRITE状态,这时候有两个条件判断,第一个if(app_rdy)为真,说明写命令是有效的,那么随之伴随的是地址的累加,同时也会计数,如果写命令发送了128次,就结束。第二个if(wr_burst_data_req)为真,注意wr_burst_data_req为真实际就是app_wdf_rdy为真,所以写的数据是被缓存到了fifo并且当读命令有效时会依次传入,这里大家会问,为啥不让app_rdy和app_wdf_rdy同时为真才地址增加和写数据呀,这是因为app_rdy和app_wdf_rdy并不是一直都为高电平,下面是上电结果;

看到没,rdy为低时,app_wdf_rdy为高,这说明数据此时相对于地址来说多写进去一次,那么多的那个数据就被缓存了,等到下一个rdy为高就会去写入之前那个缓存的数据而不是当前时刻的数据。这也就是为什么每个条件判断语句都会去计数,一个计的是多少个写命令被发出,另一个是多少个写的数据被发送。

下面来看下读过程,首先state在IDLE状态,当rd_burst_req有效时进入MEM_READ状态,这里同样有两个if判断,第一个if(app_rdy)是用来判断读命令是否有效并且地址累加,第二个if(app_rd_data_valid)是读数据有效,根据上面的读流程,读数据有效并不会随着读命令有效就马上出现,一般会延迟多个周期,所以同样需要分开判断并且计数。来看时序:

看到没,当读请求有效时,下一个时钟周期地址就开始计数并且累计了,但是app_rd_data_valid还需延迟一会才能有效。

其实把读写原理搞懂后就很简单,博主一开始卡住的地方就是写的那块,以为写数据需要app_rdy和app_wdf_rdy同时有效才能成功写入,没有搞懂命令和数据的关系,因为ip核的写数据是先缓存在fifo中的,所以即使当前写命令无效时,写数据依旧可以成功写入。感觉是不是和SDRAM不一样啊,可能没用ip核和用了还是有区别的吧。。。

感觉ddr3的时序重要的还是这两点,其他的至于如何精确地址和数据对应,可以具体分析,会发现程序写的还是很严谨的啊。。。

这篇关于vivado下ddr3的读写和测试详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/SLAM_masterFei/article/details/101344855
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/520740

相关文章

ShardingSphere之读写分离方式

《ShardingSphere之读写分离方式》:本文主要介绍ShardingSphere之读写分离方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录ShardingSphere-读写分离读写分离mysql主从集群创建 user 表主节点执行见表语句项目代码读写分

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么

python3 pip终端出现错误解决的方法详解

《python3pip终端出现错误解决的方法详解》这篇文章主要为大家详细介绍了python3pip如果在终端出现错误该如何解决,文中的示例方法讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下... 目录前言一、查看是否已安装pip二、查看是否添加至环境变量1.查看环境变量是http://www.cppcns

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Swagger2与Springdoc集成与使用详解

《Swagger2与Springdoc集成与使用详解》:本文主要介绍Swagger2与Springdoc集成与使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1. 依赖配置2. 基础配置2.1 启用 Springdoc2.2 自定义 OpenAPI 信息3.

mysql中的group by高级用法详解

《mysql中的groupby高级用法详解》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,本文给大家介绍mysql中的groupby... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Spring Cache注解@Cacheable的九个属性详解

《SpringCache注解@Cacheable的九个属性详解》在@Cacheable注解的使用中,共有9个属性供我们来使用,这9个属性分别是:value、cacheNames、key、key... 目录1.value/cacheNames 属性2.key属性3.keyGeneratjavascriptor