使用opencv实现图像中几何图形检测

2023-12-21 12:20

本文主要是介绍使用opencv实现图像中几何图形检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 几何图形检测介绍

1.1 轮廓(contours)

什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV
中使用轮廓发现相关函数时候要求输入图像是二值图像,这样便于轮廓提取、边缘提取等操作。轮廓发现的函数与参数解释如下:

函数原型:

findContours(image, mode, method, contours=None, hierarchy=None, offset=None)

参数:

  • image输入/输出的二值图像
  • mode 迒回轮廓的结构、可以是List、Tree、External
  • method 轮廓点的编码方式,基本是基于链式编码
  • contours 迒回的轮廓集合
  • hieracrchy 迒回的轮廓层次关系
  • offset 点是否有位移

1.2 多边形逼近

多边形逼近,是通过对轮廓外形无限逼近,删除非关键点、得到轮廓的关键点,不断逼近轮廓真实形状的方法,OpenCV中多边形逼近的函数与参数解释如下:

函数原型:

approxPolyDP(curve, epsilon, closed, approxCurve=None)

参数:

  • curve 表示输入的轮廓点集合
  • epsilon 表示逼近曲率,越小表示相似逼近越厉害
  • close 是否闭合

1.3 几何距计算

图像几何距是图像的几何特征,高阶几何距中心化之后具有特征不变性,可以产生Hu距输出,用于形状匹配等操作,这里我们通过计算一阶几何距得到指定轮廓的中心位置,计算几何距的函数与参数解释如下:

函数原型:

moments(array, binaryImage=None)

参数:

  • array表示指定输入轮廓
  • binaryImage默认为None

2 基于opencv实现几何图形检测

整个代码实现分为如下几步完成

  • 加载图像,
  • 图像二值化
  • 轮廓发现
  • 几何形状识别
  • 测量周长、面积、计算中心
  • 颜色提取

2.1 加载图像并进行二值化处理

的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。

函数原型:

def threshold(src: Any,thresh: Any,maxval: Any,type: Any,dst: Any = None) -> None

src:源图像,可以为8位的灰度图,也可以为32位的彩色图像。(两者由区别)

dst:输出图像

thresh:阈值

maxval:dst图像中最大值

type:阈值类型,可以具体类型如下:

           enum ThresholdTypes {THRESH_BINARY     = 0,            //黑白

                                                 THRESH_BINARY_INV = 1,        //黑白反转

                                                 THRESH_TRUNC      = 2,        //得到图像多像素值

                                                 THRESH_TOZERO     = 3,        //当前点值大于阈值时,不改

                                                                                                    变,否则设置为0

                                                 THRESH_TOZERO_INV = 4,        //当前点值大于阈值时,

                                                                                                    设置为0,否则不改变

                                                  THRESH_MASK       = 7,

                                                  THRESH_OTSU       = 8,        //自适应阈值

                                                  THRESH_TRIANGLE   = 16
             };

具体实现代码:

frame = cv.imread("./data/jihe2.png")# 二值化图像
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
cv.imshow("input image", frame)

2.2 轮廓检测与逼近

当需要对图像进行形状分析时,需要使用多边形逼近一个轮廓,使得顶点数目变少,算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。OpenCV里面用函数approxPolyDP()实现。approxPolyDP()用另一条顶点较少的曲线来逼近一条曲线或者一个多边形,这样两条曲线之间的距离小于或等于指定的精度。同时也有使闭合逼近曲线的选项(那就是说,起始点和终止点相同)。

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,approxPolyDP 主要功能是把一个连续光滑曲线折线化,对图像轮廓点进行多边形拟合。

具体实现代码:

contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
for cnt in range(len(contours)):# 提取与绘制轮廓cv.drawContours(result, contours, cnt, (0, 255, 0), 2)# 轮廓逼近epsilon = 0.01 * cv.arcLength(contours[cnt], True)approx = cv.approxPolyDP(contours[cnt], epsilon, True)

2.3 几何形状判断

根据corners数量对形状进行判断。

approx = cv.approxPolyDP(contours[cnt], epsilon, True)# 分析几何形状
corners = len(approx)
shape_type = ""if corners < 3:continueif corners == 3:count = self.shapes['triangle']count = count + 1self.shapes['triangle'] = countshape_type = "三角形"
if corners == 4:count = self.shapes['rectangle']count = count + 1self.shapes['rectangle'] = countshape_type = "矩形"
if corners >= 10:count = self.shapes['circles']count = count + 1self.shapes['circles'] = countshape_type = "圆形"
if 4 < corners < 10:count = self.shapes['polygons']count = count + 1self.shapes['polygons'] = countshape_type = "多边形"

2.4 面积周长计算

# 计算面积与周长
p = cv.arcLength(contours[cnt], True)
area = cv.contourArea(contours[cnt])
print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s " % (p, area, color_str, 

2.5 完整代码:

import cv2 as cv
import numpy as npclass ShapeAnalysis:def __init__(self):self.shapes = {'triangle': 0, 'rectangle': 0, 'polygons': 0, 'circles': 0}def analysis(self, frame):h, w, ch = frame.shaperesult = np.zeros((h, w, ch), dtype=np.uint8)# 二值化图像print("start to detect lines...\n")gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)cv.imshow("input image", frame)contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)for cnt in range(len(contours)):# 提取与绘制轮廓cv.drawContours(result, contours, cnt, (0, 255, 0), 2)# 轮廓逼近epsilon = 0.01 * cv.arcLength(contours[cnt], True)approx = cv.approxPolyDP(contours[cnt], epsilon, True)# 分析几何形状corners = len(approx)shape_type = ""if corners < 3:continueif corners == 3:count = self.shapes['triangle']count = count + 1self.shapes['triangle'] = countshape_type = "三角形"if corners == 4:count = self.shapes['rectangle']count = count + 1self.shapes['rectangle'] = countshape_type = "矩形"if corners >= 10:count = self.shapes['circles']count = count + 1self.shapes['circles'] = countshape_type = "圆形"if 4 < corners < 10:count = self.shapes['polygons']count = count + 1self.shapes['polygons'] = countshape_type = "多边形"# 求解中心位置mm = cv.moments(contours[cnt])if mm['m00'] == 0:continuecx = int(mm['m10'] / mm['m00'])cy = int(mm['m01'] / mm['m00'])cv.circle(result, (cx, cy), 3, (0, 0, 255), -1)# 颜色分析color = frame[cy][cx]color_str = "(" + str(color[0]) + ", " + str(color[1]) + ", " + str(color[2]) + ")"# 计算面积与周长p = cv.arcLength(contours[cnt], True)area = cv.contourArea(contours[cnt])print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s " % (p, area, color_str, shape_type))cv.imshow("Analysis Result", result)print("triangle: ", self.shapes['triangle'])print("rectangle: ", self.shapes['rectangle'])print("polygons: ", self.shapes['polygons'])print("circles: ", self.shapes['circles'])return self.shapesif __name__ == "__main__":src = cv.imread("./data/jihe2.png")ld = ShapeAnalysis()ld.analysis(src)cv.waitKey(0)cv.destroyAllWindows()

原始图像:

运行结果显示:

周长: 553.973, 面积: 11687.500 颜色: (190, 146, 112) 形状: 矩形 
周长: 479.556, 面积: 14743.500 颜色: (232, 162, 0) 形状: 矩形 
周长: 543.144, 面积: 18333.500 颜色: (21, 0, 136) 形状: 多边形 
周长: 341.421, 面积: 7593.000 颜色: (164, 73, 163) 形状: 多边形 
周长: 761.796, 面积: 13221.500 颜色: (87, 122, 185) 形状: 圆形 
周长: 594.257, 面积: 24703.500 颜色: (39, 127, 255) 形状: 圆形 
周长: 592.000, 面积: 14508.000 颜色: (36, 28, 237) 形状: 矩形 
周长: 432.291, 面积: 11939.500 颜色: (204, 72, 63) 形状: 多边形 
周长: 280.451, 面积: 4917.000 颜色: (190, 146, 112) 形状: 多边形 
周长: 531.588, 面积: 10587.000 颜色: (164, 73, 163) 形状: 矩形 
周长: 405.262, 面积: 4172.500 颜色: (76, 177, 34) 形状: 圆形 
周长: 370.191, 面积: 9746.000 颜色: (232, 162, 0) 形状: 圆形 
周长: 486.000, 面积: 14762.000 颜色: (232, 162, 0) 形状: 矩形 
triangle:  0
rectangle:  5
polygons:  4
circles:  4

这篇关于使用opencv实现图像中几何图形检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519978

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.