Kubernetes 学习总结(40)—— Kubernetes 之 自动伸缩 HPA、VPA、CA和CPA详解

2023-12-21 10:36

本文主要是介绍Kubernetes 学习总结(40)—— Kubernetes 之 自动伸缩 HPA、VPA、CA和CPA详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Kubernetes 提供了多种自动伸缩机制,例如 HPA(Horizontal Pod Autoscaling),可以根据不同情况动态调整 Pod 副本数量。此功能使 Pod 能够有效地处理当前流量,而无需管理员不断干预来调整副本数量。除了 HPA 之外,Kubernetes 还提供了其他相关机制,例如 VPA(Vertical Pod Autoscaler)、CA(Cluster Autoscaler)和 CPA(Custom Pod Autoscaler)。

  1. 适用场景
  2. 触发条件
  3. 调整目标

我们将深入研究每个机制的这三个维度。

HPA(水平 Pod 自动缩放器)

适用场景

Deployment/ReplicaSet 可以部署 Pod 的多个副本,但固定数量缺乏灵活性,尤其是当应用程序流量根据特定时段波动时。在这种场景下,你可以使用HPA(Horizontal Pod Autoscaler)[1]来动态调整Pod的数量。

触发条件

HPA 是 Kubernetes 中的内置控制器。它与API Server通信以确定是否调整Pod的数量(增加或减少)。当 Metrics Server 安装在环境中时,它可以利用 CPU/内存等资源使用指标来做出决策。这些指标与 Pod 中配置的 CPU/内存请求进行比较,以确定是否超出阈值。此外,可以根据总体 Pod 使用情况或特定容器使用情况来计算使用情况。

调整目标

HPA 调整 Pod 的数量。 有多个参数(包括Behaviour)可以调整,允许你指定每次调整时 Pod 数量应变化的百分比或绝对值。除了默认的资源使用情况外,HPA 还可以结合 KEDA(https://keda.sh/)等指标或项目来提供不同角度的决策。

VPA(垂直 Pod 自动缩放器)

适用场景

与水平扩展副本数量以处理流量的 HPA 不同,VPA[2]会调整各个实例的资源使用情况,例如 CPU 和内存。将新应用程序部署到 Kubernetes 时,通常会遇到配置资源请求/限制设置的困难。VPA持续观察实例的资源使用情况并执行相关操作。这些操作可能涉及调整设置和重新启动 Pod,或者只是提供建议而不重新启动 Pod。后者依赖Operator根据观察到的资源使用情况收集和修改Deployment文件。

触发条件

在环境中部署 VPA 控制器后,你可以创建 VPA 来指定需要观察哪些Deployment。VPA 主要侧重于观察和计算 CPU/内存请求/限制设置的适当数字。观察这一点需要时间,并且基于太短的收集时间获得的结果可能会导致不适当的使用估计。

调整目标

VPA 以每个 Pod 为基础运行。它不会修改 Pod 副本的数量,但会估计 CPU/内存请求/限制使用情况。 Auto/Recreate模式下,设置相应的值,并重启Pod。在Off模式下,仅执行计算而不重新启动 Pod。

CPA(集群比例自动缩放器)

适用场景

HPA和VPA是管理资源使用、基于水平和垂直方面调整应用程序以满足当前需求的常用方法。CPA[3]旨在根据集群规模水平扩展 Pod 副本数量。一个常见的例子是 DNS 服务。CPA可以根据当前集群规模动态调整DNS实例数量,集群规模可以是节点数,也可以是整体CPU容量。与HPA/VPA关注应用本身的资源使用情况不同,CPA的触发调整是根据节点自身的能力进行的。设置从应用程序的角度开始,探索每个副本可以处理多少个节点实例或总 CPU 实例。相关设置包括coresPerReplicanodesPerReplica。当前合适的 Pod 数量使用以下公式计算:副本 = max(ceil(核心 * 1/coresPerReplica), ceil(节点 * 1/nodesPerReplica))

调整目标

CPA根据配置的coresPerReplicanodesPerReplica以及当前节点规模计算出合适的数量。它动态调整目标 Pod 副本。

CA(集群自动缩放器)

适用场景

之前的HPA、VPA、CPA等方法都是根据各种情况动态调整Pod的数量。CA[4]则根据具体情况动态调整节点数量。例如,当 Pod 充分利用所有节点上的资源,没有为新部署留下 CPU/内存资源时,CA 会动态添加新节点以提供额外的计算资源。反之,当节点资源使用率较低时,可以动态移除节点,尤其是在云环境中,以节省成本。在节点移除过程中,常见的做法是使用类似于Drain的方法。必须注意PodDisruptionBudget和TerminationGracePeriodSeconds等参数,以确保应用程序过渡期间对现有服务的影响最小。Drain 命令能否成功完成取决于该节点上的所有 Pod 是否都被成功移除。如果有 Pod 需要较长的时间(terminationGracePeriodSeconds)来处理 Grafecul 关闭过程,则节点驱逐的时间取决于这些 Pod 是否顺利终止。

触发条件

一个常见的触发场景是当任何 Pod 由于 k8s 集群资源不足而进入 Pending 状态时。此操作会提示 CA 控制器添加新节点。一旦新节点成功添加到 Kubernetes 集群并变为 Ready,应用程序就可以顺利部署和运行。相反,当节点使用率在一定时间内低于阈值时,可以移动目标节点上的 Pod 并删除该节点。不同的 Kubernetes 平台有不同的实现,因此需要确认具体的实现和相关设置,例如将新节点均匀分布在不同的可用区或使用注释来防止特定应用程序被驱逐。所有设置均取决于平台。

调整目标

CA 根据每个节点进行调整。 当一个节点被删除时,所有正在运行的 Pod 都会被重新调度到其他节点。

总结

Kubernetes提供了多种自动伸缩机制,如HPA(水平Pod自动缩放器),可根据不同情况动态调整Pod副本数量。此功能使Pod能够有效处理当前流量,无需管理员不断干预。除了HPA外,还有VPA(垂直Pod自动缩放器)、CA(集群比例自动缩放器)和CPA(自定义Pod自动缩放器)。它们分别从水平和垂直方面,以及整个集群规模角度,调整Pod和节点数量。这些机制相互补充,可根据需求灵活运用。

  1. 上述所有机制并不相互排斥。例如,某个应用类别可以使用HPA来调整Pod数量,并与CA相辅相成,动态调整节点数量以满足需求。

  2. 由于这些操作导致 Pod 和节点数量的增加或减少,可能会出现意外的 Pod 分发场景。在这种情况下,可能需要像descheduler[5]或Affinity、SpreadConstraint 这样的机制来平衡部署情况。

这篇关于Kubernetes 学习总结(40)—— Kubernetes 之 自动伸缩 HPA、VPA、CA和CPA详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519663

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰