linux 内核同步互斥技术之cache 伪共享和隐含内存屏障

2023-12-21 09:52

本文主要是介绍linux 内核同步互斥技术之cache 伪共享和隐含内存屏障,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

隐含内存屏障

内核的有些函数隐含内存屏障。
(1)获取和释放函数。
(2)中断禁止函数。

1.获取和释放函数
获取( acquire)函数包括如下。
(1)获取锁的函数。锁包括自旋锁、读写自旋锁、互斥锁、信号量和读写信号量。
(2) smp_load_acquire(p):加载获取。
(3) smp_cond_load_acquire(ptr, cond_expr):带条件的加载获取。

获取操作隐含如下。
(1)获取操作后面的内存访问操作只能在获取操作完成之后被观察到。
(2)获取操作前面的内存访问操作可能在获取操作完成之后被观察到。

释放(release)函数包括如下。
(1)释放锁的函数。
(2) smp_store_release(p, v):存储释放。

释放操作隐含如下。
(1)释放操作前面的内存访问操作必须在释放操作完成之前被观察到。
(2)释放操作后面的内存访问操作可能在释放操作完成之前被观察到。

获取操作和释放操作都是单向屏障。

有返回值的atomic操作
主要指以下方法:
        xchg();
        cmpxchg();
        atomic_cmpxchg();
        atomic_inc_return();
        atomic_dec_return();
        atomic_add_return();
        atomic_sub_return();
        atomic_inc_and_test();
        atomic_dec_and_test();
        atomic_sub_and_test();
        atomic_add_negative();
        atomic_add_unless();    /* when succeeds (returns 1) */
        test_and_set_bit();
        test_and_clear_bit();
        test_and_change_bit();
而这些方法是不隐含内存屏障的:
        atomic_set();
        set_bit();
        clear_bit();
        change_bit();
        atomic_add();
        atomic_sub();
        atomic_inc();
        atomic_dec();

2.中断禁止函数
禁止中断和开启中断的函数只充当编译器优化屏障。

cache 伪共享

我们熟悉了MESI状态的转换的之后,我们来看cache伪共享就简单多了。什么是cache伪共享呢?其实,我们知道一个cache line的大小是32字节或者64字节,如果两个频繁访问的数据A和B,他们共处在一个cache line里面,然后不同的CPU都在频繁的访问A或者B的数据,那么就会带来性能上的问题,可能这个cache line的状态要频繁的变来变去,造成一种无畏的颠簸,我们知道MESI本质上是要消耗系统内部总线的带宽的,你一个cache line的状态老是频繁的变来变去,总线带宽都被你消耗了不少,当然会引起性能的问题,所以,这个叫做cache伪共享(英文叫做false sharing)。
伪共享的避免:
第一个案例是cache的伪共享的避免。避免的方法主要有两个。
第一个是:一些常用的数据结构在定义时就约定数据结构以一级缓存对齐。例如使用如下的宏来让数据结构首地址以L1 cache对齐。下面这个宏是利用了GCC的特性,_attribute的属性,来让数据结构的起始地址以某个数字对齐,这里是以L1 cache对齐。
  
第二个是:数据结构中频繁访问的成员可以单独占用一个高速缓存行,或者相关的成员在高速缓存行中彼此错开,以提高访问效率。
例如struct zone数据结构使用ZONE_PADDING技术(填充字节的方式)来让频繁访问的成员在不同的cache line中。
  
所以,cache伪共享,在有些情况下是性能杀手,而且你又比较难去发现它,所以需要我们编程的时候,特别注意。你写的数据结构里,有没有可能出现 不同的CPU核心频繁访问某些成员,导致cache伪共享的?这个需要写程序的时候就要思考清楚。
 

这篇关于linux 内核同步互斥技术之cache 伪共享和隐含内存屏障的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519519

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变