亚马逊云科技向量数据库,正在改变零售商向客户提供量身定制建议的方式

本文主要是介绍亚马逊云科技向量数据库,正在改变零售商向客户提供量身定制建议的方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 在当今的数字时代,电子商务已成为我们生活中不可或缺的一部分,为我们提供了触手可及的便利和无限的产品选择。为了增强在线购物体验,零售商使用个性化产品推荐作为吸引客户和促进销售的关键策略。推动这场革命的尖端技术之一是向量数据库,它是一种强大的工具,正在改变零售商向客户提供量身定制建议的方式。

 在文中将探讨向量数据库在零售推荐中的重要性、它们如何彻底改变电子商务格局,以及Amazon Relational Database Service(Amazon RDS)for PostgreSQL pgvector扩展如何在您的应用程序中实现机器学习(ML)功能。

 个性化挑战

 传统的零售推荐系统通常依赖基本算法,例如基于内容的过滤。基于内容的过滤利用商品特征来推荐其他商品,如用户喜欢或收藏的商品。使用基于内容的过滤有一个缺点,那就是推荐是基于人工设计的特征,因此在用户现有兴趣之外进行扩展的能力有限。尽管这些方法很有用,但它们往往无法提供准确和相关的推荐,这是因为模型僵化,无法将范围扩大到用户已知范围之外,从而导致返回的结果缺乏多样性。零售商在提供个性化推荐方面面临多项挑战,包括处理大规模数据集、捕获产品和用户之间的复杂关系以及适应动态的客户偏好。

 向量数据库的兴起

 向量数据库的出现改变了零售推荐领域的游戏规则。与传统方法不同,向量数据库是特征或属性的数学表示,可以在高维向量空间中表示产品和客户。这些表示被称为嵌入,对每个商品或用户的内在特征进行编码,捕捉它们之间的显性和隐性关系。

 向量表示的力量

 向量表示的主要优势在于它们能够捕捉产品或客户之间的复杂关系和相似之处。这种嵌入表示是AI驱动的应用程序的核心,因为它允许系统处理文本操作。复杂的向量嵌入需要专门的数据库系统,而传统的基于标量的数据库却受到限制。嵌入使零售商能够发掘隐藏的联系,并提供与每位客户个人偏好密切相关的推荐。通过将商品和用户映射到共享的向量空间中,零售商可以有效地测量它们之间的接近程度并识别相关产品或志趣相投的客户。

 增强个性化和客户体验

 向量数据库有助于提高零售推荐的个性化程度。通过考虑产品属性、浏览行为、购买历史甚至情境信息等各种因素,零售商可以提供更准确、更相关的建议。例如,如果客户之前曾表现出对某些品牌的偏好,则可以查询向量数据库以识别这些品牌的相似商品并将其作为推荐呈现。这种个性化水平增强了客户体验,使购物之旅更加愉快,并增加了转化的可能性。

 使用Amazon RDS for PostgreSQL和pgvector增强用户体验

 使用pgvector扩展在RDS for PostgreSQL之上构建应用程序可以解锁生成式人工智能(GenAI)的价值并增强客户体验。通过在Amazon Aurora PostgreSQL兼容版或Amazon RDS for PostgreSQL上集成pgvector,电子商务网站无需对系统进行全面检修即可利用向量数据库的优势。

 pgvector扩展的重要性在于,它可以在RDS for PostgreSQL中实现高级搜索功能。传统的关系数据库擅长基于精确匹配或范围比较的结构化查询。但是,在搜索相似或相关数据时,它们的效率可能会降低。pgvector扩展为PostgreSQL添加了向量相似度搜索功能,使您能够根据数据的向量表示进行复杂的相似度搜索和推荐。

 使用pgvector,您可以将文本或数字数据的向量表示存储在RDS for PostgreSQL表中,并使用各种距离度量有效地搜索相似的向量。由于电子商务搜索引擎的效率在很大程度上依赖于推荐系统,因此拥有一个允许查询向量化嵌入的数据存储可以获得新的见解。该扩展使用高级索引技术来加快k最近邻(k-NN)相似度搜索速度。

 带pgvector的RDS for PostgreSQL在零售推荐方面的优势

 RDS for PostgreSQL具有以下优势:

  • 提高准确性——通过捕获复杂的关系和规律,您可以更细致地了解用户偏好。通过利用先进的机器学习技术(如深度学习模型),带pgvector的向量数据库可为应用程序提供符合客户个人偏好的高度准确推荐。

  • 近实时的个性化——在快节奏的电子商务世界中,实时推荐对于在浏览会话期间吸引客户至关重要。带pgvector的RDS for PostgreSQL擅长提供近实时的个性化推荐,为客户提供符合他们当前兴趣和行为的相关建议。pgvector的索引功能可加快搜索处理,并最大限度地减少识别向量中最近邻居所需的时间。

  • 可扩展性——随着电子商务网站的持续发展并收集大量数据,可扩展性成为关键因素。RDS数据库旨在高效地处理大规模数据集,从而随着客户群的扩大实现无缝扩展。pgvector集成到RDS for PostgreSQL后,可以在不中断现有基础设施的情况下实现无缝扩展。

  • 灵活性——pgvector的显著优势之一是它与围绕PostgreSQL的所有现有开发人员工具兼容。现有的PostgreSQL用户无需迁移到全新的数据库系统即可使用pgvector的向量相似度搜索功能。这种灵活性使零售商能够快速采用向量数据库并将其集成到现有工作流程中。

  • 适应性推荐——客户偏好和趋势会随着时间的推移而变化,因此推荐系统必须进行调整。带pgvector的RDS for PostgreSQL允许持续学习客户数据、微调AI/ML模型以及更新向量表示,因此具有出色的适应性。通过更新产品和用户的向量表示,零售商可以跟上不断变化的偏好,并确保他们的推荐保持相关。

 结论

 在竞争激烈的电子商务世界中,提供个性化的零售推荐对于吸引客户和推动销售至关重要。传统的推荐系统通常难以提供准确和相关的建议。但是,随着向量数据库的出现,零售商可以利用先进机器学习算法(例如K最近邻)的力量来提供高度准确和实时的个性化推荐。

 通过在带pgvector的全新或现有RDS for PostgreSQL部署中部署机器学习模型,零售商可以提高推荐系统的准确性、可扩展性和适应性。利用pgvector的向量化嵌入为电子商务网站提供了新的可能性,提高了个性化推荐的准确性和速度。首先,您可以深入了解亚马逊云科技上的生成式人工智能,并直接从亚马逊云科技管理控制台或AWS CLI启动一个新的RDS DB实例。更多关于此主题的资料和文章,可以在这里(https://aws.amazon.com/cn/blogs/china/revolutionize-retail-recommendations-for-ecommerce-with-amazon-rds-for-postgresql-and-genai/

 )了解。

这篇关于亚马逊云科技向量数据库,正在改变零售商向客户提供量身定制建议的方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/519320

相关文章

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,