浅析RoPE旋转位置编码的远程衰减特性

2023-12-21 03:36

本文主要是介绍浅析RoPE旋转位置编码的远程衰减特性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么 θ i \theta_i θi的取值会造成远程衰减性

旋转位置编码的出发点为:通过绝对位置编码的方式实现相对位置编码。

对词向量 q \boldsymbol{q} q添加绝对位置信息 m m m,希望找到一种函数 f f f,使得:
< f ( q , m ) , f ( k , n ) > = g ( q , k , m − n ) <f(\boldsymbol{q}, m), f(\boldsymbol{k}, n)> = g(\boldsymbol{q}, \boldsymbol{k}, m - n) <f(q,m),f(k,n)>=g(q,k,mn)
假设词向量是二维的,借用复数来进行求解(具体求解过程参考:https://spaces.ac.cn/archives/8265),最终得到一种可行解:
f ( q , m ) = q e i m θ = ( c o s m θ − s i n m θ s i n m θ c o s m θ ) ( q 0 q 1 ) \begin{align} f(\boldsymbol{q}, m) &= \boldsymbol{q} e^{im \theta} \\ &= \left(\begin{matrix} cos\ m\theta& -sin\ m\theta\\ sin\ m\theta& cos\ m\theta \end{matrix} \right) \left(\begin{array}{c} q_0\\ q_1 \end{array} \right) \end{align} f(q,m)=qeimθ=(cos mθsin mθsin mθcos mθ)(q0q1)
扩展到多维:

f ( q , m ) = R m q f(\boldsymbol{q}, m) = \boldsymbol{R}_m \boldsymbol{q} f(q,m)=Rmq
R m = ( c o s m θ 0 − s i n m θ 0 0 0 ⋯ 0 0 s i n m θ 0 c o s m θ 0 0 0 ⋯ 0 0 0 0 c o s m θ 1 − s i n m θ 1 ⋯ 0 0 0 0 s i n m θ 1 c o s m θ 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 0 ⋯ c o s m θ d / 2 − 1 − s i n m θ d / 2 − 1 0 0 0 0 ⋯ s i n m θ d / 2 − 1 c o s m θ d / 2 − 1 ) \boldsymbol{R}_m = \left(\begin{matrix} cos\ m\theta_0& -sin\ m\theta_0& 0& 0& \cdots& 0& 0\\ sin\ m\theta_0& cos\ m\theta_0& 0& 0& \cdots& 0& 0\\ 0& 0& cos\ m\theta_1& -sin\ m\theta_1& \cdots& 0& 0\\ 0& 0& sin\ m\theta_1& cos\ m\theta_1& \cdots& 0& 0\\ \vdots& \vdots& \vdots& \vdots& \ddots& \vdots& \vdots\\ 0& 0& 0& 0& \cdots& cos\ m\theta_{d/2 - 1}& -sin\ m\theta_{d/2-1}\\ 0& 0& 0& 0& \cdots& sin\ m\theta_{d/2 - 1}& cos\ m\theta_{d/2-1}\\ \end{matrix}\right) Rm= cos mθ0sin mθ00000sin mθ0cos mθ0000000cos mθ1sin mθ10000sin mθ1cos mθ1000000cos mθd/21sin mθd/210000sin mθd/21cos mθd/21
相当于左乘一个旋转矩阵,或者说高维向量,每两维一组,分别旋转一个角度,且不改变模长。

显然, ( R m q ) T ( R n k ) = q T R m T R n k = q T R n − m k (\boldsymbol{R}_m \boldsymbol{q})^{T} (\boldsymbol{R}_n \boldsymbol{k})= \boldsymbol{q}^T \boldsymbol{R}_m^T \boldsymbol{R}_n \boldsymbol{k} = \boldsymbol{q}^T \boldsymbol{R}_{n-m} \boldsymbol{k} (Rmq)T(Rnk)=qTRmTRnk=qTRnmk,这样Attention就包含相对位置信息了。


下面分析为什么 θ i \theta_i θi的取值会造成远程衰减性

远程衰减性指的是,对于两个词向量,如果两者相对距离较近,那么它们的注意力分数应该偏高,反之应该偏低。

假设 q \boldsymbol{q} q k \boldsymbol{k} k均为ones向量,则 ( R m q ) T ( R n k ) = q T R n − m k = 2 ∑ i = 0 d / 2 − 1 c o s ( n − m ) θ i (\boldsymbol{R}_m \boldsymbol{q})^{T} (\boldsymbol{R}_n \boldsymbol{k})= \boldsymbol{q}^T \boldsymbol{R}_{n-m} \boldsymbol{k} = 2\sum_{i=0}^{d/2-1} cos\ (n-m)\theta_i (Rmq)T(Rnk)=qTRnmk=2i=0d/21cos (nm)θi,设相对距离 n − m n-m nm x x x,则相对距离为 x x x的向量之间注意力得分:
g ( x ) = 2 ∑ i = 0 d / 2 − 1 c o s x θ i g(x) = 2\sum_{i=0}^{d/2-1} cos\ x\theta_i g(x)=2i=0d/21cos xθi
如果任意 θ i = 0 \theta_i=0 θi=0,则 g ( x ) = d g(x)=d g(x)=d,无论相对距离多大,注意力得分都相等

如果任意 θ i = 1 \theta_i=1 θi=1,则 g ( x ) = d c o s x g(x)=d\ cos\ x g(x)=d cos x,随着相对距离增大,注意力得分呈周期性变化,但不会震荡衰减:


而作者在 θ i \theta_i θi的选择上,沿用了Sinusoidal位置编码的方案,即 θ i = 1000 0 − 2 i / d \theta_i=10000^{-2i/d} θi=100002i/d,它会带来一定的远程衰减性

每个 θ i \theta_i θi c o s x θ i cos\ x\theta_i cos xθi的周期大小 T i T_i Ti等于 2 π θ i = 2 π 1000 0 − 2 i / d = 2 π ∗ 1 0 8 i / d \frac{2\pi}{\theta_i} = \frac{2\pi}{10000^{-2i/d}} = 2\pi*10^{8i/d} θi2π=100002i/d2π=2π108i/d,所以 i i i越大, T i T_i Ti越大,最小周期为 T 0 = 2 π T_0 = 2\pi T0=2π,最大周期为 T d / 2 − 1 = 2 π ∗ 1 0 ( 4 − 8 d ) T_{d/2-1} = 2\pi*10^{(4-\frac{8}{d})} Td/21=2π10(4d8)

如果对于所有的 x x x x < 1 4 T d / 2 − 1 = π 2 ∗ 1 0 ( 4 − 8 d ) x<\frac{1}{4}T_{d/2-1}=\frac{\pi}{2}*10^{(4-\frac{8}{d})} x<41Td/21=2π10(4d8),也就是说, c o s x θ d / 2 − 1 cos\ x\theta_{d/2-1} cos xθd/21处于单调递减区间(下方的蓝色区间)

由于前面的 c o s x θ i cos x\theta_i cosxθi呈周期变化,而周期变化的函数 + 单调递减的函数 = 震荡递减的函数。因此,注意力得分 g ( x ) g(x) g(x)随着相对距离 x x x的增大而震荡减小。


比如在LLaMA中, d = 4096 d=4096 d=4096 1 4 T d / 2 − 1 \frac{1}{4}T_{d/2-1} 41Td/21近似于 1 0 4 10^4 104,由于实际应用中,最大序列长度一般不会大于 1 0 4 10^4 104,所以相对距离 x < 1 4 T d / 2 − 1 x<\frac{1}{4}T_{d/2-1} x<41Td/21一般是成立的,当然,也可以增大 θ i = 1000 0 − 2 i / d \theta_i=10000^{-2i/d} θi=100002i/d中的10000,这样 T d / 2 − 1 T_{d/2-1} Td/21会变得更大。


d = 4 d=4 d=4时,最大周期 T d / 2 − 1 T_{d/2-1} Td/21是628,下面的示例 x x x会超过 1 4 T d / 2 − 1 \frac{1}{4}T_{d/2-1} 41Td/21,因此 g ( x ) g(x) g(x)呈周期性,并不是震荡减小

d = 256 d=256 d=256时,下面的示例 x x x不超过 1 4 T d / 2 − 1 = 14617 \frac{1}{4}T_{d/2-1}=14617 41Td/21=14617,因此震荡减小。

这篇关于浅析RoPE旋转位置编码的远程衰减特性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518509

相关文章

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Java服务实现开启Debug远程调试

《Java服务实现开启Debug远程调试》文章介绍如何通过JVM参数开启Java服务远程调试,便于在线上排查问题,在IDEA中配置客户端连接,实现无需频繁部署的调试,提升效率... 目录一、背景二、相关图示说明三、具体操作步骤1、服务端配置2、客户端配置总结一、背景日常项目中,通常我们的代码都是部署到远程

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

Java 中编码与解码的具体实现方法

《Java中编码与解码的具体实现方法》在Java中,字符编码与解码是处理数据的重要组成部分,正确的编码和解码可以确保字符数据在存储、传输、读取时不会出现乱码,本文将详细介绍Java中字符编码与解码的... 目录Java 中编码与解码的实现详解1. 什么是字符编码与解码?1.1 字符编码(Encoding)1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima