【halcon深度学习之那些封装好的库函数】determine_dl_model_detection_param

本文主要是介绍【halcon深度学习之那些封装好的库函数】determine_dl_model_detection_param,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

determine_dl_model_detection_param

目标检测的数据准备过程中的有一个库函数determine_dl_model_detection_param
“determine_dl_model_detection_param” 直译为 “确定深度学习模型检测参数”。

这个过程会自动针对给定数据集估算模型的某些高级参数,强烈建议使用这一过程来优化训练和推断性能。

在这里插入图片描述

过程签名

determine_dl_model_detection_param(: : DLDataset, ImageWidthTarget, ImageHeightTarget, GenParam : DLDetectionModelParam)

描述

该过程用于分析提供的深度学习数据集(DLDataset)以进行目标检测,以确定与锚点生成相关的模型参数。生成的DLDetectionModelParam是一个包含建议值的字典,用于各种目标检测模型的参数。

参数

  • DLDataset:用于目标检测的深度学习数据集的字典。
  • ImageWidthTarget:作为模型输入的目标图像宽度(经过预处理后的图像宽度)。
  • ImageHeightTarget:作为模型输入的目标图像高度(经过预处理后的图像高度)。
  • GenParam:包含通用输入参数的字典。
  • DLDetectionModelParam:包含建议的模型参数的输出字典。

参数解析

第一个参数DLDataset,就是我们读取到的数据集,数据集 (数据集就是我们标注好的图片数据集, 我们可以通过 read_dict() 读取halcon提供的数据集。也可以通过 read_dl_dataset_from_coco 读取通用的coco数据集)

图片缩放

第二,第三个参数,是图片的大小设置。我们知道数据集里是有描述图片原始大小的数据的。这里需要你输入预处理后图片的大小,也就是说,你可以通过这两个参数对图片进行缩放。一般我们会设置一个较小的大小,已加快训练的速度!

GenParam

GenParam 是一个字典,包含一些通用的输入参数,可以用来影响 determine_dl_model_detection_param 过程中参数的确定。
使用输入字典GenParam,可以进一步影响参数的确定。可以设置不同的键值对来影响锚点生成和模型参数的确定。
你可以根据你的需求在 GenParam 中设置不同的键值对来调整算法的行为。以下是键和对应的值:

  1. ‘anchor_num_subscales’: 整数值(大于0),确定搜索锚点子尺度数量的上限值。默认值为3。

  2. ‘class_ids_no_orientation’: 元组,包含表示类别标识的整数值。设置那些应该忽略方向的类别的标识。这些被忽略类别的边界框被视为方向为0的轴对齐边界框。仅适用于检测实例类型为’rectangle2’的情况。

  3. ‘display_histogram’: 确定是否显示数据直方图以进行数据集的视觉分析。可能的值有’true’和’false’(默认为’false’)。

  4. ‘domain_handling’: 指定图像域的处理方式。可能的值有:

    • 'full_domain'(默认):图像不被裁剪。
    • 'crop_domain':图像被缩小到其域定义。
    • 'ignore_direction':布尔值(或’true’/‘false’),确定是否考虑边界框的方向。仅在检测实例类型为’rectangle2’的情况下可用。参考 ‘get_dl_model_param’ 文档以获取有关此参数的更多信息。
  5. ‘max_level’: 整数值(大于1),确定搜索最大层级的上限值。默认值为6。

  6. ‘max_num_samples’: 整数值(大于0或-1),确定用于确定参数值的最大样本数。如果设置为-1,则选择所有样本。请注意,不要将此值设置得太高,因为这可能导致内存消耗过大,对机器造成高负载。然而,如果 ‘max_num_samples’ 设置得太低,确定的检测参数可能无法很好地代表数据集。默认值为1500。

  7. ‘min_level’: 整数值(大于1),确定搜索最小层级的下限值。默认值为2。

  8. ‘preprocessed_path’: 指定预处理目录的路径。预处理目录包含DLDataset的字典(.hdict文件),以及一个名为’samples’的子目录,其中包含预处理的样本(例如,由过程’preprocess_dl_dataset’生成)。对于已经预处理的数据集,将忽略输入参数ImageWidthTarget和ImageHeightTarget,并可将它们设置为[]。仅当数据集已经为应用程序进行了预处理时,此参数才适用。

  9. ‘image_size_constant’: 如果将此参数设置为’true’,则假定数据集中的所有图像具有相同的大小,以加速处理。图像大小由数据集中的第一个样本确定。此参数仅在数据集尚未预处理且’domain_handling’为’full_domain’时适用。默认值为’true’。

  10. ‘split’: 确定用于分析的数据集拆分。可能的值包括 ‘train’(默认)、‘validation’、‘test’ 和 ‘all’。如果指定的拆分无效或数据集未创建拆分,则使用所有样本。

  11. ‘compute_max_overlap’: 如果将此参数设置为’true’,将为数据集确定检测参数 ‘max_overlap’ 和 ‘max_overlap_class_agnostic’。

建议的模型参数 DLDetectionModelParam

DLDetectionModelParam是模型的输出参数
输出字典(DLDetectionModelParam)包括以下参数的建议值:

  • ‘class_ids’:类别标识
  • ‘class_names’:类别名称
  • ‘image_width’:图像宽度
  • ‘image_height’:图像高度
  • ‘min_level’:最小层级
  • ‘max_level’:最大层级
  • ‘instance_type’:实例类型
  • ‘anchor_num_subscales’:锚点子尺度数量
  • ‘anchor_aspect_ratios’:锚点纵横比
  • ‘anchor_angles’:锚点角度(仅用于’instance_type’为’rectangle2’的模型)
  • ‘ignore_direction’:是否忽略方向(仅用于’instance_type’为’rectangle2’的模型)
  • ‘max_overlap’:最大重叠度(如果’compute_max_overlap’设置为’true’)
  • ‘max_overlap_class_agnostic’:最大重叠度(如果’compute_max_overlap’设置为’true’)

注意事项

文档中提到的返回值是对模型运行时间和检测性能之间的折衷的近似值,可能需要进一步的实验来优化参数。此外,建议的参数是基于原始数据集而不考虑训练期间可能的数据增强。如果应用了某些数据增强方法(如’mirror’、‘rotate’),可能需要调整生成的参数以涵盖所有边界框形状。

小结

determine_dl_model_detection_param 会根据输入的数据集,得到模型的某些高级参数,这些高级参数会用到后续的训练和推理。换句话说,训练和推理需要用到一些高级参数。 而这个函数,可以根据输入的数据集,帮你分析,然后得到这些高级参数的值,让你用于后续的操作!这个函数让我们后续调参有了一定的依据!

代码上下文

在这里插入图片描述


* 
* ************************
* **   Set parameters  ***
* ************************
* 
* Set obligatory parameters.
Backbone := 'pretrained_dl_classifier_compact.hdl'
NumClasses := 10
* Image dimensions of the network. Later, these values are
* used to rescale the images during preprocessing.
ImageWidth := 512
ImageHeight := 320* Read in a DLDataset.
* Here, we read the data from a COCO file.
* Alternatively, you can read a DLDataset dictionary
* as created by e.g., the MVTec Deep Learning Tool using read_dict().
read_dl_dataset_from_coco (PillBagJsonFile, HalconImageDir, dict{read_segmentation_masks: false}, DLDataset)
* 
* Split the dataset into train/validation and test.
split_dl_dataset (DLDataset, TrainingPercent, ValidationPercent, [])
* 
* **********************************************
* **   Determine model parameters from data  ***
* **********************************************
* 
* Generate model parameters min_level, max_level, anchor_num_subscales,
* and anchor_aspect_ratios from the dataset in order to improve the
* training result. Please note that optimizing the model parameters too
* much on the training data can lead to overfitting. Hence, this should
* only be done if the actual application data are similar to the training
* data.
GenParam := dict{['split']: 'train'}
* 
determine_dl_model_detection_param (DLDataset, ImageWidth, ImageHeight, GenParam, DLDetectionModelParam)
* 
* Get the generated model parameters.
MinLevel := DLDetectionModelParam.min_level
MaxLevel := DLDetectionModelParam.max_level
AnchorNumSubscales := DLDetectionModelParam.anchor_num_subscales
AnchorAspectRatios := DLDetectionModelParam.anchor_aspect_ratios
* 
* *******************************************
* **   Create the object detection model  ***
* *******************************************
* 
* Create dictionary for generic parameters and create the object detection model.
DLModelDetectionParam := dict{}
DLModelDetectionParam.image_width := ImageWidth
DLModelDetectionParam.image_height := ImageHeight
DLModelDetectionParam.image_num_channels := ImageNumChannels
DLModelDetectionParam.min_level := MinLevel
DLModelDetectionParam.max_level := MaxLevel
DLModelDetectionParam.anchor_num_subscales := AnchorNumSubscales
DLModelDetectionParam.anchor_aspect_ratios := AnchorAspectRatios
DLModelDetectionParam.capacity := Capacity
* 
* Get class IDs from dataset for the model.
ClassIDs := DLDataset.class_ids
DLModelDetectionParam.class_ids := ClassIDs
* Get class names from dataset for the model.
ClassNames := DLDataset.class_names
DLModelDetectionParam.class_names := ClassNames
* 
* Create the model.
create_dl_model_detection (Backbone, NumClasses, DLModelDetectionParam, DLModelHandle)
* 
* Write the initialized DL object detection model
* to train it later in part 2.
write_dl_model (DLModelHandle, DLModelFileName)
* 
* 
* *********************************
* **   Preprocess the dataset   ***
* *********************************
* 
* Get preprocessing parameters from model.
create_dl_preprocess_param_from_model (DLModelHandle, 'none', 'full_domain', [], [], [], DLPreprocessParam)
* 
* Preprocess the dataset. This might take a few minutes.
GenParam := dict{overwrite_files: 'auto'}
preprocess_dl_dataset (DLDataset, DataDirectory, DLPreprocessParam, GenParam, DLDatasetFilename)
* 
* Write preprocessing parameters to use them in later parts.
write_dict (DLPreprocessParam, PreprocessParamFileName, [], [])

从这里,我们就看到了,create_dl_model_detection 创建检测模型的时候,就用到了这些参数了!后续的训练过程中也会用到,我们下一篇见

这篇关于【halcon深度学习之那些封装好的库函数】determine_dl_model_detection_param的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/518471

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷