线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)

2023-12-20 16:50

本文主要是介绍线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘在直线拟合上的应用

在前一篇最小二乘的文章中:

线性代数 --- 投影与最小二乘 下(多元方程组的最小二乘解与向量在多维子空间上的投影)_松下J27的博客-CSDN博客多变量方程组的最小二乘,向量到多维子空间上的投影。https://blog.csdn.net/daduzimama/article/details/129559433?spm=1001.2014.3001.5501

我们知道了:1,正规方程, 2,计算最优解的方法,3,计算投影的方法

        在这篇文章中,我会从最小二乘在拟合直线上的应用开始,先是用实例来说明最小二乘的实际应用。紧接着,我会从这个例子出发,循序渐进的引出为什么我们希望A的列向量不仅仅是相互独立的,更希望他们是相互正交的。从而导出,如何令A的列向量彼此正交,这就是著名的Gram-Schmidt正交化。(需要再次重申的是,学习不是为了考试,不是为了背公式,更不需要题海战术,而是“知其(Gram-Schmidt)然,知其(Gram-Schmidt)所以然”)


拟合直线

        拟合直线可以说是最小二乘最好的应用之一。简而言之,就是用m>2个点(也可以说是m个观测点,及其所对应的m个数据)去拟合一条直线。

        对某个实验而言,如果他的实验结果是线性的,且没有任何实验误差,则两次实验的结果就能确定一条符合这一实验规律的直线b=C+Dt,而且后续所有的实验结果都应当落在这条直线上。假定现有m个实验结果,他们在横坐标上的值为t_{1},t_{2},...,t_{m},他们在纵坐标中所对应的值分别是b_{1},b_{2},...,b_{m}。现在我们用方程b_{i}=C+Dt_{i}表示一条穿过这些点的直线,得到如下方程组:

        如果m个实验结果都没有误差,则,上述方程组有解,且有唯一解C,D。但,如果实验结果有误差,则不可能找到一个完美的C,D,让这条直线穿过所有的点。这是一个(overdetermined system)超定方程组,m>2个方程,2个未知数,方程组无解。用矩阵来表示为:

        因实验结果的误差导致方程组无解,因此,我们只能找一条尽可能贴近所有点的直线。对于矩阵A而言,他有两个列向量,方程组无解,所以无法通过线性组合得到等式右端的列向量。在维持A的两个列向量不变的情况下,我们通过新的线性组合\hat{C}\hat{D},在A的列空间中找到了最接近向量b的向量p,即,b在A的列空间C(A)上的投影。

        同时,也最小化了每个点与直线之间的纵向误差e_{i},即,最小化E={e_{1}}^{2}+{e_{2}}^{2}+...+{e_{m}}^{2}。其中,e_{i}=b_{i}-C-Dt_{i}。(但这不是我推崇的思维,应该优先考虑用投影的角度思考!)

方程左右两边同时乘以A^{T},得到“正规方程(Normal Equation)”:

A^{T}A\hat{x}=A^{T}b(或A^{T}A\hat{x}=Pb,其中P为投影矩阵)

其中等式左边A^{T}A等于:

 等式右边A^{T}b等于:

最终得到A^{T}A\hat{x}=A^{T}b


 Example 1:

 如图(a),在一个实验中的不同时刻t1,t2,t3下,得到三组测量值b1,b3,b3,分别是(注意,他们并不是等间隔的):

 对应的方程组为:

        方程组无解,因为这三点不在一条直线上。通过求解最小二乘方程组,联立正规方程A^{T}A\hat{x}=A^{T}b

\large A=\begin{bmatrix} 1 &-1 \\ 1 &1 \\ 1 &2 \end{bmatrix}                \large \hat{x}=\begin{bmatrix} \hat{C}\\ \hat{D} \end{bmatrix}                \large b=\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}

左边A^{T}A

\large \mathbf{A^{T}A=\begin{bmatrix} 1 & 1 &1 \\ -1& 1 & 2 \end{bmatrix} \begin{bmatrix} 1 &-1 \\ 1 &1 \\ 1 &2 \end{bmatrix} = \begin{bmatrix} 3 & 2\\ 2 & 6 \end{bmatrix}}

右边A^{T}b

\large A^{T}b=\begin{bmatrix} 1 &1 &1 \\ -1&1 & 2 \end{bmatrix}\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix} = \begin{bmatrix} 5\\ 6 \end{bmatrix}

得到:

 最终得到最优解为,\hat{C}=9/7,\hat{D}=4/7。 

 \large \hat{x}=(A^{T}A)^{-1}A^{T}b=\begin{bmatrix} 6 &-2 \\ -2& 3 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 9/7\\ 4/7 \end{bmatrix}

对应的最佳拟合直线为:

\large f(x)=9/7+4/7t

投影p为:

\large p=A(A^{T}A)^{-1}A^{T}b=A\hat{x}=\begin{bmatrix} 1 & -1\\ 1 & 1\\ 1 & 2 \end{bmatrix}\begin{bmatrix} 9/7\\ 4/7 \end{bmatrix}=\begin{bmatrix} 5/7\\ 13/7\\ 17/7 \end{bmatrix}

        现在我们结合下图(b),从投影的角度来回顾一下这个问题。 向量b无法通过矩阵A的两个列向量[1,1,1]和[-1,1,2]通过线性组合得到,因为,b不在A的列空间内。通过把向量b投影到A的列空间上,在A的列空间上找到了一个离向量b最近的向量p,这个投影向量p可以通过A的两个列向量的线性组合得到,线性组合的权重为 \hat{C}=9/7,\hat{D}=4/7 。

 Attention:

        现在,我们已经得到了最优拟合的直线方程f(t)=9/7+4/7t,我们把t=(-1, 1, 2)时在直线上所对应的点求出来,看看有什么神奇的事发生!

当t=-1时,f(t=-1)=9/7-4/7=5/7,当t=1时,f(t=1)=9/7+4/7=13/7,当t=2时,f(t=2)=9/7+8/7=17/7。然后把这些点绘制到图(a)上,并且把图(a)和图(b)放在一起看。

        接下来我们会看到,这两幅图以不同的艺术形式描述了同一个数学问题, 且, 他们是密切相关的

关联1:投影向量p

        最开始,我们在图(a)中,描绘了三个不在同一直线上的数据点(t1=-1,b1=1),(t2=1,b2=1),(t3=2,b3=3)。然后,我们用投影的方式/求解正规方程的方式求得了最小二乘解\large \hat{x},同时也求出了向量b在A的列空间C(A)上的投影向量p=[5/7, 13/7, 17/7],这些都体现在了图(b)中。最后,我们根据最优拟合直线的函数,算出了t=(t1,t2,t3)时在直线上所对应的数据点(t1=-1,p1=5/7),(t2=1,p2=13/7),(t3=2,p3=17/7),并绘制到图(a)中。

        可见,投影向量p中三个元素的值,正好是拟合直线上t所对应的点。对于图(b)而言,用线性代数的语言说,是把b拉到了子空间C(A)上。对于图(a)而言,通过最小化每个点到最优拟合直线上的距离e1,e2,e3,把本不在同一直线上的三个点b1,b2,b3拉到了同一条直线上。且p1,p2,p3正好等于投影向量p中元素的值。

        换句话说,“把b投影到A的列空间上”和“把三个原始数据点(t1,b1),(t2,b2),(t3,b3)移到了同一条直线上”,这两个概念是等同的。

关联2:误差向量e

向量b减去投影向量p,就能得到误差向量e(他垂直于C(A)):

\large e=b-p=\begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix} - \begin{bmatrix} 5/7\\ 13/7\\ 17/7 \end{bmatrix} = \begin{bmatrix} 2/7\\ -6/7\\ 4/7 \end{bmatrix}

向量e中的每个元素值的含义是什么? 实际上就是图(a)中,每个b与p之间的误差


(全文完)

作者 --- 松下J27

参考文献(鸣谢)

1,线性代数及其应用,侯自新,南开大学出版社,1990.

2,Linear Algebra and Its Applications(Fourth Edition) - Gilbert Strang(文中大部分插图来自于这本书)

3,Introduction to Linear Algebra,Fifth Edition - Gilbert Strang

格言摘抄:

        吾尝终日而思矣,不如须臾之所学也;吾尝跂而望矣,不如登高之博见也。---《劝学》

(配图与本文无关)

版权声明:文中的部分图片,文字或者其他素材,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/516746

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签