知乎周源微信_每周源代码9-WideFinder版

2023-12-20 11:50

本文主要是介绍知乎周源微信_每周源代码9-WideFinder版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

知乎周源微信

知乎周源微信

In my new ongoing quest to read source code to be a better developer, I now present the ninth in an infinite number of a weekly series called "The Weekly Source Code." Here's some source I'm reading this week that I enjoyed.

在我的新不断追求阅读源代码,是一个更好的开发者,我现在每周一次的系列名为无限数量呈现第九“每周源代码”。 这是我本周喜欢的一些资料。

Ya, I know this one is just 4 days after the last one, but I was having too much fun and couldn't wait until Wednesday. Plus, it's a new week so poop on you.

是的,我知道这是最后一个比赛之后的第四天,但是我玩得太开心了,等不及要等到星期三。 另外,这是新的一周,所以请大便。

Last month Tim Bray shared his experiences writing a program that does, well, here's Joe Cheng's succinct description. Tim calls the project WideFinder.

上个月,蒂姆·布雷(Tim Bray)分享了他编写程序的经验,该程序很好地完成了Joe Cheng的简洁描述。 蒂姆将项目称为WideFinder

The Wide Finder challenge is to write a program that:

Wide Finder的挑战是编写一个程序,该程序:

  1. Scans logfiles for hits on blog articles

    扫描日志文件以查找博客文章中的点击

  2. which are counted and

    计算在内

  3. sorted with the

    排序

  4. top 10 most popular being printed to stdout. It should also

    前10大最受欢迎的被打印到标准输出。 它也应该

  5. be about as elegant and concise as Tim’s Ruby version and

    Tim的Ruby版本一样优雅简洁

  6. its performance should scale with additional CPU cores.

    它的性能应随其他CPU内核而扩展

And this is done on a fairly large log file of about 250 megs. While Item #6 is the most interesting, many folks are focusing on Item #5. Either way, it's a heck of a lot more interesting problem than FizzBuzz and worth adding to your interview arsenal pocket.

这是在大约250兆的相当大的日志文件上完成的。 虽然第6项是最有趣的,但许多人都在关注第5项。 无论哪种方式,这都是比FizzBu​​zz有趣得多的问题,值得添加到您的采访 武器库中

I encourage you to go check out Tim's site as he's continued to list the sources that he finds most interesting. As a primarily C# programmer who's always trying to stretch out of my comfort zone, here's what I've found interesting, in the order I found them interesting.

我鼓励您访问Tim的网站,因为他继续列出了他最感兴趣的来源。 作为一个主要的C#程序员,他总是试图超出我的舒适范围,这就是发现有趣的地方的顺序按照我发现它们有趣的顺序

  • Don Box's Naive Implementation in C# 3.0 - Apparently this is the kind of code Don can write after two beers. Notice the use of yield to make this "LINQ over a text file of CR/LF strings." That's one of those write-it-constantly-over-and-over-again helper methods that makes me wonder why it wasn't just included.

    Don Box在C#3.0中的朴素实现-显然,这是Don在喝完两杯啤酒后可以编写的代码。 请注意使用yield来制作“在CR / LF字符串的文本文件上的LINQ”。 那就是那些不断重复地写它的辅助方法之一,这让我想知道为什么不仅仅包含它。

    static void Main(string[] args){var regex = new Regex(@"GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/[^ .]+)");var grouped = from line in ReadLinesFromFile(@"C:\temp\bray.txt")let match = regex.Match(line)where match.Successlet url = match.Valuegroup url by url;var ordered = from g in groupedlet count = g.Count()orderby count descendingselect new { Count = count, Key = g.Key };foreach (var item in ordered.Take(10))Console.WriteLine("{0}: {1}", item.Count, item.Key);}// LINQ-compatible streaming I/O helperpublic static IEnumerable<string> ReadLinesFromFile(string filename){using (StreamReader reader = new StreamReader(filename)) {while (true){string s = reader.ReadLine();if (s == null)break;yield return s;}}
  • Joe Cheng tightens it up with his LINQ skillz and does the group and sort all in one swell foop. As an aside, I'd like to see his QuickTimer class for next week. Nice use of my favorite C# idiom - IDisposable/using. Joe also alludes to some parallelism that could be easily added with PLINQ. Maybe we'll see that code soon.

    Joe Cheng用LINQ的技巧加强了工作,并一口气地进行小组整理。 顺便说一句,我想在下周看他的QuickTimer课程。 很好地使用了我最喜欢的C#习惯用法-IDisposable / using。 Joe还提到可以通过PLINQ轻松添加的一些并行性 也许我们会很快看到该代码。

  • using (new QuickTimer(“Total time”))
    {IEnumerable<string> data = new LineReader(args[0]);Regex regex = new Regex(@”GET /ongoing/When/\d\d\dx/\d\d\d\d/\d\d/\d\d/([^ ]+) “,RegexOptions.Compiled | RegexOptions.CultureInvariant);var result = from line in datalet match = regex.Match(line)where match.Successgroup match by match.Groups[1].Value into grporderby grp.Count() descendingselect new { Article = grp.Key, Count = grp.Count() };foreach (var v in result.Take(10))Console.WriteLine(“{0}: {1}”, v.Article, v.Count);
    }
  • My programmer's man-crushes continue as Jomo Fisher posts the WideFinder Naive F# Implementation. Notice how everyone uses "naive" to basically say "I'm sure it could be better, so don't be mean." I can't tell you with a straight face that I totally understand this. It's kind of magical.

    当Jomo Fisher发布WideFinder Naive F#实现时,我的程序员的心血继续。 请注意,每个人都是如何使用“天真”来基本说“我敢肯定这会更好,所以不要刻薄”。 我不能直率地告诉你我完全理解这一点。 有点神奇。

  • #light
    open System.Text.RegularExpressions
    open System.IO
    open System.Textlet regex = new Regex(@"GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/[^ .]+)", RegexOptions.Compiled)let seqRead fileName =seq { use reader = new StreamReader(File.OpenRead(fileName))while not reader.EndOfStream doyield reader.ReadLine() }let query fileName = seqRead fileName|> Seq.map (fun line -> regex.Match(line)) |> Seq.filter (fun regMatch -> regMatch.Success)|> Seq.map (fun regMatch -> regMatch.Value)|> Seq.countBy (fun url -> url)*And here's the code to call it:    for result in query @"file.txt" do let url, count = result
  • Busting out of the Microsoft Languages for a minute, here's Tim's Ruby example:

    暂时退出Microsoft Languages,这是Tim的Ruby示例:
  • counts = {}
    counts.default = 0ARGF.each_line do |line|if line =~ %r{GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/[^ .]+) }counts[$1] += 1end
    endkeys_by_count = counts.keys.sort { |a, b| counts[b] <=> counts[a] }
    keys_by_count[0 .. 9].each do |key|puts "#{counts[key]}: #{key}"
    end
  • Here's the Java version from UnintentionalObjectRetention. I haven't done Java since I worked at Nike in 1997 as a contractor:

    这是UnintentionalObjectRetention的Java版本。 自从我1997年在耐克公司担任承包商以来,我还没有做过Java:

  • public class WideFinder {     public static void main(String[] args) throws IOException {      Map<String, Integer> counts = new HashMap<String, Integer>();      Pattern p = Pattern.compile("GET /ongoing/When/\\d\\d\\dx/(\\d\\d\\d\\d/\\d\\d/\\d\\d/[^ .]+) ");  BufferedReader in = new BufferedReader(new InputStreamReader(           new FileInputStream(args[0]), "US-ASCII"));         String line = null;     while ((line = in.readLine()) != null) {       Matcher m = p.matcher(line);       if (m.find()) {            String key = m.group();     Integer currentCount = counts.get(key);   counts.put(key, (currentCount == null ? 1 : (currentCount + 1)));     }}    in.close();      List<Entry<String, Integer>> results = new ArrayList<Map.Entry<String, Integer>>(counts.entrySet());      Collections.sort(results, new Comparator<Entry<String, Integer>>() {   public int compare(Entry<String, Integer> o1, Entry<String, Integer> o2)        {            return o2.getValue().compareTo(o1.getValue());     }     });   for(int i = 0; i < 10; i++) {    System.out.println(results.get(i));    }}
    }
  • And last, but kind of first, here it is in LISP from Nate.

    最后,但首先,这里是Nate的LISP中。

  • (defun run (&rest logs)(let ((counts (make-hash-table :test #'equal)))(dolist (filename logs)(with-open-file (stream filename :direction :input:external-format :latin-1)(loop for line = (read-line stream nil stream)until (eq line stream)do (cl-ppcre:register-groups-bind (match)("GET /ongoing/When/\\d{3}x/(\\d{4}/\\d{2}/\\d{2}/[^ .]+) " line)(incf (gethash match counts 0))))))(loop for key being the hash-keys of countscollect key into keysfinally (map nil #'(lambda (x)(format t "~D: ~A~%" (gethash x counts) x))(subseq (sort keys #'>:key #'(lambda (x) (gethash x counts))) 0 10)))))

    A good way to understand other languages (programming or human) is to read the same story in each of these languages and compare them. Tim's problem serves that purpose well!

    理解其他语言(编程语言或人类语言)的一种好方法是用每种语言阅读相同的故事并进行比较。 蒂姆的问题很好地达到了这个目的!

    Oh, and if you want to see why we program in Managed Code, check out the C version.

    哦,如果您想了解我们为什么使用托管代码编程,请查看C版本。

    Feel free to send me links to cool source that you find hasn't been given a good read.

    随时向我发送指向很酷的资源的链接,您发现这些链接没有得到很好的阅读。

    翻译自: https://www.hanselman.com/blog/the-weekly-source-code-9-widefinder-edition

    知乎周源微信

这篇关于知乎周源微信_每周源代码9-WideFinder版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515949

相关文章

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

如何基于Python开发一个微信自动化工具

《如何基于Python开发一个微信自动化工具》在当今数字化办公场景中,自动化工具已成为提升工作效率的利器,本文将深入剖析一个基于Python的微信自动化工具开发全过程,有需要的小伙伴可以了解下... 目录概述功能全景1. 核心功能模块2. 特色功能效果展示1. 主界面概览2. 定时任务配置3. 操作日志演示

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

如何用java对接微信小程序下单后的发货接口

《如何用java对接微信小程序下单后的发货接口》:本文主要介绍在微信小程序后台实现发货通知的步骤,包括获取Access_token、使用RestTemplate调用发货接口、处理AccessTok... 目录配置参数 调用代码获取Access_token调用发货的接口类注意点总结配置参数 首先需要获取Ac

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接