车道线检测End-to-end Lane Detection through Differentiable Least-Squares Fitting(论文解读)

本文主要是介绍车道线检测End-to-end Lane Detection through Differentiable Least-Squares Fitting(论文解读),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接

https://arxiv.org/pdf/1902.00293

动机

一般的车道线检测算法分为两步,第一步进行图像分割,第二步对分割结果进行后处理。这种2-step的方法不是直接预测车道线,所以通过分割的方式预测车道线不一定能够实现最佳的表现。

贡献

提出一个可以直接预测车道线的方法。利用最小二乘法可微的性质,实现车道线检测网络端到端的训练。车道线检测网络分为两个部分:(1)一个用于预测weight map的深度神经网络 (2)一个可微最小二乘法拟合模块

算法

Overview1、输入:(1)使用一个固定转换矩阵H对RGB图片转换视角后的RGB鸟瞰图 (2)每个像素点在x轴方向坐标归一化后的x-map (3)每个像素点在y轴方向坐标归一化后的y-map
2、预测过程:(1)首先将RGB图片输入deep network获得多个weight map,每个weight map对应一条可能存在的车道线
(2)将weight maps,x-map以及y-map输入到least-squares layer,进行最小二乘法线性回归拟合训练,获得拟合各个车道线的函数的常量值,具体过程如下:
假设要检测n条车道线,则需要去拟合这条车道线获得函数常量值表示该函数。传统线性回归方法如下:
eq1其中m是图像的分辨率,X的一行是一个车道线的x轴方向坐标值,Y的一行是一个车道线的y轴方向的坐标值。本质上这就是一个线性回归问题。把车道线视作一个连续函数曲线,能够通过求β值得到这些函数,从而在图片中准确定位车道线。通过最小二乘法,可以得到β的值:beita
为了把图片中的上下文信息融合到车道线的定位中,本文将通过deep network提取的weight map加入车道线拟合计算中,所以对上式进行改进:
在这里插入图片描述
nn加入weight map后,线性回归过程中会结合图片特征实现拟合车道线的函数的常量预测。
3、输出:拟合车道线的函数的常量值β,也就得到拟合车道线的函数曲线,即车道线定位
4、训练损失函数:最小二乘法线性回归是可微的,所以能够实现反向传播,不需要把其作为独立的后处理操作。从而可以和deep network一起训练。
一般的损失函数:
在这里插入图片描述
但是上述损失函数没有考虑到β向量中每个分量的敏感性。也许β中某个分量很小,但是这个分量的轻微变动就会导致最终函数曲线的巨大波动,类似蝴蝶效应。而有的分量剧烈波动但对曲线影响很小。所以考虑到β向量的各个分量的敏感性不同,重新设计了一个几何损失函数:
在这里插入图片描述
其中t是一个设置好的固定值。从积分的角度来看,其本质上就是求两个函数曲线在x∈(0,t)范围内的围成的区域在高度变为原来的平方后的面积,如下图所示。面积越大,说明越不拟合,几何损失自然也越大。
在这里插入图片描述对于一次函数和二次函数,都可以求得L的积分公式,能够进行反向传播
在这里插入图片描述

实验

数据集

使用TuSimple数据集,并手工清除了部分车道线不清晰的图片。80%数据训练,20%数据验证。

评价指标

loss:在训练过程中几何损失函数的损失值
error:在这里插入图片描述预测函数曲线和GT车道曲线在x∈(0,t)范围内的围成的区域的面积大小。

结果

在这里插入图片描述cross-entropy:使用先进行语义二值分割后根据分割结果获得拟合曲线的2-step方式进行车道线检测

优缺点

优点:利用最小二乘法线性回归能够拟合曲线以及可微的性质,能够实现一步到位的端到端训练,直接预测拟合车道线的函数常量值。
缺点:deep network中的weight map固定,只能预测固定数目的车道线,无法在车道线数量变化时自适应。同时由于只用函数曲线拟合车道线,忽略了车道线的粗细情况。

总结反思

个人思考:
(1)将deep network分成两个branch输出,一个输出weight map,用于最小二乘线性线性回归,另一个用于语义分割。最后将预测的拟合车道线的函数和语义分割后的车道线进行综合,进一步通过互补纠正车道线定位,提高准确率。
(2)既然可以使用线性回归方式拟合车道线,实现车道线的定位,那么是否可以去拟合其他更加复杂的形状,从而实现图像中一些特定目标的定位?

这篇关于车道线检测End-to-end Lane Detection through Differentiable Least-Squares Fitting(论文解读)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/515934

相关文章

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho

Java中的StringUtils.isBlank()方法解读

《Java中的StringUtils.isBlank()方法解读》:本文主要介绍Java中的StringUtils.isBlank()方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录所在库及依赖引入方法签名方法功能示例代码代码解释与其他方法的对比总结StringUtils.isBl

对Django中时区的解读

《对Django中时区的解读》:本文主要介绍对Django中时区的解读方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景前端数据库中存储接口返回AI的解释问题:这样设置的作用答案获取当前时间(自动带时区)转换为北京时间显示总结背景设置时区为北京时间 TIM

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

SpringBoot中配置文件的加载顺序解读

《SpringBoot中配置文件的加载顺序解读》:本文主要介绍SpringBoot中配置文件的加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot配置文件的加载顺序1、命令⾏参数2、Java系统属性3、操作系统环境变量5、项目【外部】的ap

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun