[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform

2023-12-20 10:36

本文主要是介绍[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 1. 介绍
      • 2. 架构
      • 3. 结果
      • 4. 总结

论文:FNet: Mixing Tokens with Fourier Transforms
作者:James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon
时间:2022

1. 介绍

transformer encode架构可以通过很多种方式进行加速,毫无例外的都是对attention mechanism 进行处理,通过把平方项的复杂度缩小到线性项的复杂度;

FNet没有用什么former后缀就表明,FNet并不是传统意义上transformer架构的优化,并不是在attention mechanism的优化;这里一个替换,利用线性的傅里叶变化替换掉注意力机制,在处理长文本的时候降低少许性能而巨大的提升训练推理速度和内存效率;

2. 架构

架构图如图所示,可以看到非常的清晰:

Discrete Fourier Transform(离散傅里叶变换): 对于 { x n } , n ∈ [ 0 , N − 1 ] \{x_n\},\quad n \in [0,N-1] {xn},n[0,N1],有 { X k } \{X_k\} {Xk}如下:
X k = ∑ n = 0 N − 1 x n e − 2 π i N n k 0 ≤ k ≤ N − 1 X_k=\sum_{n=0}^{N-1}x_ne^{-\frac{2\pi i}{N}nk}\quad 0\leq k \leq N-1 Xk=n=0N1xneN2πink0kN1
对于傅里叶变换的方式有两种方法,第一种就是简单的利用矩阵进行计算,有矩阵 W n k = ( e − 2 π i N n k / N ) , n , k = 1 , 2 , … , N − 1 W_{nk}=(e^{-\frac{2\pi i}{N}nk}/\sqrt N), \quad n,k=1,2,\dots,N-1 Wnk=(eN2πink/N ),n,k=1,2,,N1直接对序列乘个矩阵就好,另一种是FFT即the fast fourier transformer,采用最常见的算法是the Cooley–Tukey algorithm,将复杂度转化为 O ( N l o g N ) O(NlogN) O(NlogN)

这里利用离散傅里叶变换,对sequence求一次,对d_model求一次,得到最后的序列形状和原来的序列形状一样;最后得到的结果是一个复数,是无法使用的,我们要将其转化到实数域上来;但是这里要注意的是,是在两次fourier转化后,再进行实域转化;标准的fourier sublayer采用的是直接取实数部分的方式,论文还提到了三种其他的方式进行实域转化:Hadamard, Hartley 和 Discrete Cosine Transforms. 这里Hartley的效果和直接取实域的效果相当,其使用的方法是利用实部减去虚部的方式;

# 利用pytorch计算 2d fourier变换
x = nn.fft.fftn(x)

得到傅里叶变化序列后,经过一次残差连接和正态化,再经过一层前馈神经网络从d_model到隐藏维度,接着经过一次残差连接和正态化,再来一次前馈神经网络从隐藏维度到d_model;这就是一个fourier transformer block;

其他结构与transformer相同;

下面是模型的对比,可以看到FNet mat的mixing layer ops 操作数量是和Linaer的操作数量是一致的,因为原理都差不多,都是相当于左右各乘了一个矩阵;

但是利用FFT可以明显的看到优势;

为什么有这种效果:傅里叶转化有一个混合token的效果,而feed-forward sublayer有逆傅里叶转化的效果,傅里叶转化是把时域转化为频域,而feed-forward sublayer是一个矩阵,类似于inverse fourier transformer可以把频域转化为时域;

3. 结果

从下图中可以发现FNet-Hybrid的效果最接近于BERT

这里FNet-Hybrid意味着最后两层Fourier sublayer被替换成full attention sublayer;

这图说明了对于更大、更慢的模型,BERT和FNet-Hybrid定义了the Pareto efficiency frontier;对于更小、更快的模型,FNet和线性模型定义了效率边界。

再看下图,感觉FNet的效果特别好;

4. 总结

TPU在计算矩阵相较于FFN有优势,而GPU在计算FFN相较于矩阵有优势;
FNet非常适合用于蒸馏,因为关键层没有权重;
FNet没有transformer decode,无法处理,未来需优化;

这篇关于[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/515720

相关文章

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau