yolov5障碍物识别-雪糕筒识别(代码+教程)

2023-12-20 10:20

本文主要是介绍yolov5障碍物识别-雪糕筒识别(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

这是一个检测交通锥并识别颜色的项目。我使用 yolov5 来训练和检测视锥细胞。此外,我使用 k 均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。

在这里插入图片描述

数据集和注释

我使用了一个自收集的锥体数据集,其中包含 303 张锥体图像。这不是一个完美的做法,因为它是一个很小的数据集。我还需要自己注释图像。在这里,我使用了一个在线注释网站 Roboflow,它提供注释、预处理和增强等服务。但是,它对免费用户有 1,000 个源图像和 5,000 个生成图像的限制。

model
├── 锥体检测:Yolov5S
└── 颜色识别:主色(k-means)
用法
如果您有兴趣,可以尝试 colab 中的代码。

在这里插入图片描述

训练

# display images
from PIL import Image
import globfor imageName in glob.glob('/content/yolov5/images/*.jpg'):basewidth = 640img = Image.open(imageName)wpercent = (basewidth/float(img.size[0]))hsize = int((float(img.size[1])*float(wpercent)))img = img.resize((basewidth,hsize), Image.NEAREST)img = img.convert("RGB")img.save(imageName)
  • 如果您有带注释的数据集,则可以直接使用 train.ipynb 在 Colab 中打开项目。

  • 使用 Colab 进行训练和预测: Colab 是一个基于云的 Jupyter 笔记本服务,能够在云端运行代码。通过提供的 Colab
    链接,你可以直接在浏览器中打开并运行代码,这对于快速尝试和理解项目非常方便。
    在这里插入图片描述

  • 项目中的注意事项: 数据集大小: 作者使用了一个包含 303
    张图像的自定义数据集,但指出这并不是一个理想的实践,因为数据集规模较小。在实际应用中,使用更大规模的数据集通常会有助于提高模型的性能。

  • 在线标注服务: 使用 Roboflow
    进行图像标注,该服务提供了标注、预处理和增强等功能。然而,对于免费用户,有一些使用限制,包括最大处理图像数量和生成图像数量。

%%writetemplate /content/yolov5/models/custom_yolov5s.yaml# parameters
nc: {num_classes}  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 9, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, C3, [1024, False]],  # 9]# YOLOv5 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
  • 颜色分类: 采用 k-means 算法确定主导颜色,并将交通锥分为红、黄、绿和蓝等颜色。其他颜色被分类为未知。
    在这里插入图片描述

  • 推荐的下一步: 如果你对该项目感兴趣,可以进一步探索以下方面:

  • 数据增强: 在数据集上应用更多的数据增强技术,以提高模型的泛化能力。

  • 模型调优: 尝试使用更大的 YOLOv5 模型(例如 yolov5m、yolov5l 或
    yolov5x)进行训练,看看是否能够改善检测性能。

  • 更大的数据集: 如果可能的话,考虑收集更大规模的数据集,以进一步提高模型的准确性。
    在这里插入图片描述

视频预测

预测:
使用 predict.ipynb 进行锥体检测。 在 pycharm 中打开

# use the best weights!
%cd /content/yolov5/
!python detect.py --weights weights/best.pt --conf 0.6 --source videos/cone_video.mp4

注意:需要使用作者在 model 文件夹中训练的权重,并且有一些自定义的 YOLOv5 文件在 utils 文件夹中。
在这里插入图片描述

这篇关于yolov5障碍物识别-雪糕筒识别(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515671

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3