国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明)

本文主要是介绍国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ToolBench项目可以理解为一个能直接提供训练ToolLLM的平台,该平台同时构建了ToolLLM的一个开源训练指令集。,该项目是OpenBMB机构(面壁智能与清华NLP联合成立)旗下的一款产品,OpenBMB机构名下还同时拥有另外一款明星产品–XAgent。

ToolBench的简介

该项目旨在构建开源、大规模、高质量的指令调整 SFT 数据,以促进构建具有通用工具使用能力的强大LLMs。其目标是赋予开源 LLMs 掌握成千上万多样的真实世界API能力。项目通过收集高质量的指令调整数据集来实现这一目标。该数据集使用最新的ChatGPT(gpt-3.5-turbo-16k)自动构建,该版本升级了增强的函数调用功能。
与此同时,通过项目提供的数据集、相应的训练和评估脚本,可以得到ToolBench上经过微调的一个强大的工具调用模型ToolLLaMA。

项目数据集的构建

以下是数据集构建方法、模型训练、推理模式的整体概览
在这里插入图片描述

产品自身特点

API收集: 项目从 RapidAPI 收集了 16464 个API。RapidAPI 是一个托管开发者提供的大规模真实世界API的平台。

指令生成: 项目生成了涉及单工具和多工具场景的指令。

回答标注: 项目设计了一种新颖的深度优先搜索决策树方法(DFSDT),以增强LLMs的规划和推理能力。这显著提高了标注效率,并成功地对那些不能用CoT或ReACT回答的复杂指令进行了标注。项目提供的回答不仅包括最终答案,还包括模型的推理过程、工具执行和工具执行结果。

API Retriever: 项目整合了API检索模块,为ToolLLaMA提供了开放域的工具使用能力。

数据生成:所有数据均由OpenAI API自动生成并由项目组筛选,整个数据创建过程易于扩展。

各类ToolLLM训练数据集的对比
ToolLLaMA已经达到了和ChatGPT(turbo-16k)接近的工具使用能力,未来我们将不断进行数据的后处理与清洗,以提高数据质量并增加真实世界工具的覆盖范围。
ToolLLaMA的可用性与其他主流LLM对比

产品的FT(FineTuning)

该项目提供了ToolLLaMA的FT方法,本篇不做更多介绍,又兴趣的同学可以到这里查看其具体流程

ToolBench的安装

Clone项目

克隆这个仓库并进入ToolBench文件夹。

git clone git@github.com:OpenBMB/ToolBench.git
cd ToolBench

申请项目方的ToolbenchKey

因为项目方自建了RapidAPI的服务,可以向项目方申请使用该RapidAPI服务进行推理。
请点击这里填写问卷,大概2个工作日内,工作人员会给你ToolBench项目方给您发送toolbench key。然后初始化您的toolbench key:

export TOOLBENCH_KEY="your_toolbench_key"

当然,您也可以使用自己私有的RapidAPI Account进行推理,具体操作可以看这里

ToolBench 的设置与启动

ToolBench运行环境是要求Python>=3.9,此处我们用了Python3.10,为防止环境间的干扰,使用了Conda,Conda的安装配置可以自行百度解决,要注意下载2023年的版本,能够支持到3.10才可以

# 新创建toolbench_env环境,使用python3.10
conda create -n toolbench_env python=3.10 -y# 查看已建立的所有的虚拟环境
conda env list
# conda environments:
#
# base                  *  /root/anaconda3
# py310                    /root/anaconda3/envs/py310
# toolbench_env            /root/anaconda3/envs/toolbench_env# 切换到toolbench_env
conda active toolbench_env# 在Toolbench的根目录下执行以下命令安装依赖包
pip install -r requirements.txt

DataSet的下载

推理时会需要一些预设的数据(其实,大部分数据时训练ToolLLaMA模型所使用的),可以到 Tsinghua Cloud.这个地方去下载
下载的数据解压后,就在项目目录的data文件夹下,400M大小,其数据的目录格式如下

├── /data/
│  ├── /instruction/
│  ├── /answer/
│  ├── /toolenv/
│  ├── /retrieval/
│  ├── /test_instruction/
│  ├── /test_query_ids/
│  ├── /retrieval_test_query_ids/
│  ├── toolllama_G123_dfs_train.json
│  └── toolllama_G123_dfs_eval.json
├── /reproduction_data/
│  ├── /chatgpt_cot/
│  ├── /chatgpt_dfs/
│  ├── ...
│  └── /toolllama_dfs/

ToolBench的python应用推理

运行推理时,可以使用项目方已经训练完毕的ToolLLaMA版本,也可以使用OpenAI的key来调用GPT3.5或GPT4.0服务。

使用项目方的ToolLLaMA

项目方已经训练的ToolLLaMA版本已升级到ToolLLaMA-2-7b-v2,其模型利用了Toolbench项目的数据集,经由LLaMA-2-7b微调而来, 可免费下载使用。

抱抱脸那边时常连接不太稳定,而且,当前的ToolLLaMA-2-7b-v2模型文件的总和已经到达20G+,连接外网不方便或机器资源不那么充裕的,大概率会被劝退,这时可以使用OpenAI的Key来试试效果~~

使用OpenAI的key

  1. 用rapidAPI作答

将您的OPENAI_KEY设定后,使用以下代码运行(官方的指引直接跑不起来,请使用我的这个命令)

export TOOLBENCH_KEY=""
export OPENAI_KEY=""
export PYTHONPATH=./
python toolbench/inference/qa_pipeline.py \--tool_root_dir data/toolenv/tools/ \--backbone_model chatgpt_function \--openai_key $OPENAI_KEY \--max_observation_length 1024 \--method DFS_woFilter_w2 \--input_query_file data/test_instruction/G1_instruction.json \--output_answer_file chatgpt_dfs_inference_result/qa_answer \--toolbench_key $TOOLBENCH_KEY

注意的坑:如果代码提示有说OpenAI版本过高的问题,可以直接运行以下命令,将openai包还原到1.00以下

pip install openai==0.28.0

执行以上的命令时,会解析ata/test_instruction/G1_instruction.json文件的请求,然后进行响应,这个文件如果不做任何编辑,猜想应该会把里面的所有Task都跑一遍,我还是很心疼自己的美刀,于是只留出一个看看效果就行了,G1_instruction.json文件裁剪后的内容如下:

[{"api_list": [{"category_name": "Food","tool_name": "Nutrition by API-Ninjas","api_name": "/v1/nutrition","api_description": "API Ninjas Nutrition API endpoint.","required_parameters": [{"name": "query","type": "STRING","description": "Query text to extract nutrition information (e.g. **bacon and 3 eggs**).","default": "1lb brisket with fries"}],"optional_parameters": [],"method": "GET","template_response": {"name": "str","calories": "float","serving_size_g": "float","fat_total_g": "float","fat_saturated_g": "float","protein_g": "float","sodium_mg": "int","potassium_mg": "int","cholesterol_mg": "int","carbohydrates_total_g": "float","fiber_g": "float","sugar_g": "float"}}],"query": "I'm planning a family dinner and I need to know the nutrition information for a recipe. Can you extract the nutrition data for a dish that includes 2 pounds of chicken, 1 cup of rice, and 3 tablespoons of olive oil?","relevant APIs": [["Nutrition by API-Ninjas","/v1/nutrition"]],"query_id": 88193}
]

上面那个文件的示例,其实也就是要问这句话:

I’m planning a family dinner and I need to know the nutrition information for a recipe.
Can you extract the nutrition data for a dish that includes 2 pounds of chicken, 1 cup of rice, and 3 tablespoons of olive oil?

如果运行成功,可以看到输出的内容如下:

[process(0)]now playing I'm planning a family dinner and I need to know the nutrition information for a recipe. Can you extract the nutrition data for a dish that includes 2 pounds of chicken, 1 cup of rice, and 3 tablespoons of olive oil?, with 2 APIs
[process(0)]total tokens: 698
Action: v1_nutrition_for_nutrition_by_api_ninjas
query to Food-->nutrition_by_api_ninjas-->v1_nutrition_for_nutrition_by_api_ninjas
Action Input: {"query": "2 pounds of chicken, 1 cup of rice, and 3 tablespoons of olive oil"
}
Observation: {"error": "", "response": "[{'name': 'chicken', 'calories': 2019.8, 'serving_size_g': 907.184, 'fat_total_g': 117.0, 'fat_saturated_g': 33.2, 'protein_g': 215.3, 'sodium_mg': 655, 'potassium_mg': 1625, 'cholesterol_mg': 835, 'carbohydrates_total_g': 0.4, 'fiber_g': 0.0, 'sugar_g': 0.0}, {'name': 'rice', 'calories': 201.3, 'serving_size_g': 158.0, 'fat_total_g': 0.4, 'fat_saturated_g': 0.1, 'protein_g': 4.2, 'sodium_mg': 1, 'potassium_mg': 67, 'cholesterol_mg': 0, 'carbohydrates_total_g': 44.9, 'fiber_g': 0.6, 'sugar_g': 0.1}, {'name': 'olive oil', 'calories': 352.0, 'serving_size_g': 40.5, 'fat_total_g': 41.0, 'fat_saturated_g': 5.6, 'protein_g': 0.0, 'sodium_mg': 0, 'potassium_mg': 0, 'cholesterol_mg': 0, 'carbohydrates_total_g': 0.0, 'fiber_g': 0.0, 'sugar_g': 0.0}]"}
[process(0)]total tokens: 1405
Action: Finish
Action Input: {"return_type": "give_answer","final_answer": "The nutrition information for the dish is as follows:\n- Chicken:\n  - Calories: 2019.8\n  - Fat: 117g\n  - Saturated Fat: 33.2g\n  - Protein: 215.3g\n  - Sodium: 655mg\n  - Potassium: 1625mg\n  - Cholesterol: 835mg\n  - Carbohydrates: 0.4g\n  - Fiber: 0g\n  - Sugar: 0g\n- Rice:\n  - Calories: 201.3\n  - Fat: 0.4g\n  - Saturated Fat: 0.1g\n  - Protein: 4.2g\n  - Sodium: 1mg\n  - Potassium: 67mg\n  - Cholesterol: 0mg\n  - Carbohydrates: 44.9g\n  - Fiber: 0.6g\n  - Sugar: 0.1g\n- Olive Oil:\n  - Calories: 352\n  - Fat: 41g\n  - Saturated Fat: 5.6g\n  - Protein: 0g\n  - Sodium: 0mg\n  - Potassium: 0mg\n  - Cholesterol: 0mg\n  - Carbohydrates: 0g\n  - Fiber: 0g\n  - Sugar: 0g"
}
Observation: {"response":"successfully giving the final answer."}
[process(0)]valid=True

另外,以上命令成功运行后,就会在chatgpt_dfs_inference_result/qa_answer文件夹中生成回复文件,再次运行同样的命令不会再重新生成gpt请求,除非将应答文件手动删除。

  1. 用customAPI作答
    这种方式,其开源项目地址已有描述,可以参照这里
    需要注意的坑:
    第一, API描述的json文件中,tool_name字段名要和文件名保持一致,是不是一定英文没有验证过
    第二,json描述文件的位置要在data/toolenv/tools/目录下面,且要新建文件夹,文件夹的名字不一定非要是’Customized’,但位置不能变,因为所有tools的白名单都是从data/toolenv/tools/目录获取的

后端:server启动

正常提供服务时,我们还是需要把各个可执行命令转化为server服务,方便进行连续测试,以下则是server启动的操作方法(此处用的还是openai key,如果你想使用ToolLLaMA来启动,请参照github上的说明):

export TOOLBENCH_KEY="your toolbench key is applied from ToolBench platform"
export OPENAI_KEY="your OpenAI key"
export PYTHONPATH=./# 该条命令能够启动Toolbenchserver,不过目前官方的server启动模式还尚未能完全兼容gpt的指令,
# 在前端发出指令后,其响应的代码逻辑仍存在问题.
# 查看了一下源码,应该是toolbench_server.py代码中定义data_dict = { "query": user_input},这个对象的包装缺少api_tools的相关定义,
# 其缺失的代码逻辑需要补足后才能正常工作(本来是打算server启动后再来hack代码尝试的,发现可能需要不少变动甚至重构,还没有成型的解决方案)
python toolbench/inference/toolbench_server.py \--corpus_tsv_path data/retrieval/G1/corpus.tsv \--retrieved_api_nums 5 \--tool_root_dir data/toolenv/tools/ \--backbone_model chatgpt_function \--openai_key $OPENAI_KEY \--max_observation_length 1024 \--method DFS_woFilter_w2 \--input_query_file data/test_instruction/G1_instruction.json \--output_answer_file chatgpt_dfs_inference_result/server_answer \--toolbench_key $TOOLBENCH_KEY

注意的坑:以上使用openai key的方式启动,如果有关于model path的错误爆出时,可以将toolbench\inference\toolbench_server.py的部分代码进行变动以绕过。

# 在class Model初始化的那部分代码中变动以下内容:
print("Loading retriever...")# 注释下面这句,然后将retriever赋None值,因为使用chatgpt_function时,不会使用retriever相关代码
# self.retriever = self.pipeline.get_retriever()        self.retriever = None

正常启动后,可以看到以下提示:

Server ready* Serving Flask app 'toolbench_server'* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.* Running on all addresses (0.0.0.0)* Running on http://127.0.0.1:5000* Running on http://10.0.0.11:5000
Press CTRL+C to quit

前端:chatbot-ui-toolllama

ToolBench 项目和一个基于ChatBotUi的Web UI项目可以搭配使用, 以用于后端的Tools调用。

# 本地运行chatbot-ui-toolllama的步骤
git clone https://github.com/lilbillybiscuit/chatbot-ui-toolllama
cd chatbot-ui-toolllama
# 此处运行前请先通过nvm来快速安装node v18版本
npm install
npm run dev

运行之后,你能看到以下提示:

> ai-chatbot-starter@0.1.0 dev
> next devready - started server on 0.0.0.0:3000, url: http://localhost:3000
Attention: Next.js now collects completely anonymous telemetry regarding usage.
This information is used to shape Next.js' roadmap and prioritize features.
You can learn more, including how to opt-out if you'd not like to participate in this anonymous program, by visiting the following URL:
https://nextjs.org/telemetryevent - compiled client and server successfully in 4.3s (273 modules)
wait  - compiling...
event - compiled successfully in 302 ms (233 modules)

*注意的坑:*如果碰到以下错误信息:

showAll: args["--show-all"] ?? false,
syntaxError: Unexpected token '?'

上面的错误提示,意味着你的node环境是不是 v18版本,可以用nvm install v18来安装该环境

nvm install v18
# 根据nvm所安装的版本,把node版本切换到v18
nvm use v18.19.0
# 将v18更改为默认node版本
nvm alias default v18.19.0

启动后,访问http://localhost:3000就能打开一个类似chatgpt的聊天页面,和下面这个应该相似(借官网的一用)。这是部署了ToolbenchLLaMA的应答效果,但那个model实在是大,暂时手上没有闲置的GPU机器,自己改造了后台GPT直连,只是将python单应用跑通,了解下这个项目的应用潜力和设计思路,本人尚未将server的gpt模式和前台的联动代码调通,有兴趣的同学可以继续尝试哈。
在这里插入图片描述

这篇关于国产ToolLLM的课代表---OpenBMB机构(清华NLP)旗下ToolBench的安装部署与运行(附各种填坑说明)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515573

相关文章

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清