OpenCV消除高亮illuminationChange函数的使用

2023-12-20 09:28

本文主要是介绍OpenCV消除高亮illuminationChange函数的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学更好的别人,

做更好的自己。

——《微卡智享》

292d8839076efee2135eea0cfc2ec708.jpeg

本文长度为1129,预计阅读4分钟

导语

上一篇《OpenCV极坐标变换函数warpPolar的使用》中介绍了极坐标变换的使用,文中提到过因为手机拍的照片,部分地方反光厉害。OpenCV本身也有一个消除高亮的函数,今天这篇就是来了解一下消除高亮函数的使用,就结果来说,有效果,但不多。

773d45bbf295e56eaf31cca6869dfc88.png

实现效果

d9d4a8243b5561a6c2e9616c20f76e88.png

de5aa993534d9818e6aa3b9a12cff401.png

8eed7c039923442a8c71afa7fb582f96.png

e8aead00e727805649d0f7d3c4c27f82.png

从上几张图中可以看出,中间印的黑字的效果还明显一些,本身白字的和原来是差不多的。接下来就先说说去除高光函数illuminationChange。

illuminationChange函数

CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst,float alpha = 0.2f, float beta = 0.4f);

68a36f7a4cf86bc6ed1df6b2f6b66847.png

参数说明:

  • src——源图像,3通道图像

  • mask——掩膜,1通道或3通道图像都可以

  • dst——生成图像,同src

  • alpha、beta——两个参数共同决定消除高光后图像的模糊程度(范围0~2)beta越大,图片平滑越多,alpha越大,越接近原图细节。

2b93f054bba6fde75446b27180de9773.png

去高光函数比较简单,其实最核心的就是怎么样获取到掩膜,然后通过掩膜生成区域来实现去高光。具体的实现思路如下:

#去高光实现步骤
1获取图像区域,替换背景
2二值化检测高光区域
3查找高光区域轮廓生成掩膜
4进行去高光操作

其实上面的步骤来说,在去高光操作最核心的两个步骤就是通过二值化检测高光区域,和查找轮廓后生成掩膜。结合我们上一篇的代码,看看怎么样实现的。

01

获取图像区域替换背景

在我们上一篇的代码基础上,把获取圆的区域这块单独写了个函数出来,目的主要是检测到圆后,将圆的区域截取出后,因为要去高光,所以圆外对我们来说是无用区域,直接填充到黑色,这样就减少掩膜查找无用高光区域了。

c2e002948593c0e57d48103462584bf5.png

原理就是根据生成的矩形大小生成一个全黑的背景,然后将圆区域整个填充为白色,通过Mat.copyTo的方法实现。

e9f2141cc740438dbcd7e8eb24731bc8.png

02

查找高光区域

3ed86626860f271efede7567b4851fff.png

查找高光区域这里我也写成了一个函数,里面加了一步直方图均衡化,主要是本身图像清晰度也不高,所以使用直方图均衡化把图像对比度进行调整了一下,增强局部的对比度,更好的进行查找。

bbf575de9b1cdc0487b1905023f29da7.png

二值化后就是掩膜效果,为什么还要查找轮廓?

A

看到这里可能有人会提问,代码中threshold二值化找到的高光部分是不是直接可以当掩膜了,这个我开始也想直接这样的,省去了查找轮廓的部分,不过测试过程中直接报错了,也就是说去高光函数中掩膜区域里面只能是矩形,所以需要再加一步查找轮廓,针对轮廓生成外接矩形填充后才能使用

78bf7e20200e7f1fa9b02f91c9f0e01d.png

经过上面两步,去高光操作就实现了,后面的就是原图和处理后的图进行的极坐标变换对比。

完整代码

#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;//显示窗口设置  
//参数  img 显示的图像源,
//      winname 显示的窗口名称,
//      pointx  显示的坐标x
//      pointy  显示的坐标y
void setshowwindow(Mat img, string winname, int pointx, int pointy)
{//设置显示窗口namedWindow(winname, WindowFlags::WINDOW_NORMAL);//设置图像显示大小resizeWindow(winname, img.size());//设置图像显示位置moveWindow(winname, pointx, pointy);
}//极坐标变换
//参数 flags=INTER_LINEAR 双线性插值
Mat warpPolarMat(Mat src, int flags = INTER_LINEAR + WARP_POLAR_LINEAR) {// 圆心坐标Point2f center = Point2f(src.cols / 2, src.rows / 2);// 圆的半径double maxRadius = min(center.y, center.x) - 1;// 圆的周长int circumference = maxRadius * 2 * 3.14;//输出图像Mat dst;// 极坐标变换, Size()表示OpenCV根据输入自行决定输出图像尺寸warpPolar(src, dst, Size(0, 0), center, maxRadius, flags);// 改变结果方向rotate(dst, dst, ROTATE_90_COUNTERCLOCKWISE);return dst;
}//截取圆形图像,背景改为全黑
Mat copyCircleRoi(Mat src, Point center, int radius) {Mat rectsrc;//根据圆点和半径生成矩形Rect rect = Rect(Point(center.x - radius, center.y - radius), Point(center.x + radius, center.y + radius));//截图到当前圆的图像Mat rectroi = src(rect);//截取圆形区域Mat circleroi = Mat::zeros(rectroi.size(), CV_8U);//绘制检测到的圆circle(circleroi, Point(circleroi.rows / 2, circleroi.cols / 2), circleroi.rows / 2, Scalar(255), -1);//复制截取圆形区域rectroi.copyTo(rectsrc, circleroi);return rectsrc;
}//去除高光
Mat matilluminationChange(Mat src) {Mat gray, threshmat, dst;//复制出来改为灰度图cvtColor(src, gray, COLOR_BGR2GRAY);//直方图均衡化equalizeHist(gray, gray);//imshow("equalizeHist", gray);//二值化操作,定义大于210的即为高光threshold(gray, threshmat, 210, 255, THRESH_BINARY);//查找图片中高亮区域轮廓vector<vector<cv::Point> > contours;findContours(threshmat, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);Mat mask = Mat::zeros(src.size(), CV_8UC1);for (int i = 0; i < contours.size(); ++i) {Rect rect = boundingRect(contours[i]);rectangle(mask, rect, Scalar(255), -1);}//imshow("mask", mask);//去高光illuminationChange(src, mask, dst, 1.0f, 0.1f);return dst;
}int main(int argc, char** argv) {//测试图片文件  string testfile = "E:/DCIM/imagetest/06.png";//读取图片Mat src = imread(testfile);//修改图片大小setshowwindow(src, "src", 50, 200);imshow("src", src);//灰度图Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);//中值滤波medianBlur(gray, gray, 9);//霍夫圆检测vector<Vec3f> circles;HoughCircles(gray, circles, HOUGH_GRADIENT, 1, 50, 100, 100);//绘制检测到的圆型for (size_t i = 0; i < circles.size(); ++i) {Vec3f item = circles[i];//获取当前圆区域,用黑底Mat rectsrc = copyCircleRoi(src, Point(item[0], item[1]), item[2]);//去高光操作Mat rectdst, showmat;rectdst = matilluminationChange(rectsrc);//极坐标变换Mat wpMat1, wpMat2;wpMat1 = warpPolarMat(rectsrc);wpMat2 = warpPolarMat(rectdst);//设置当前圆显示位置String title = "rectsrc" + to_string(i);String title2 = "rectdst" + to_string(i);String title3 = "wpMat1" + to_string(i);String title4 = "wpMat2" + to_string(i);//间距int spacing = 40;if ((i % 2) == 0) {setshowwindow(rectsrc, title, 0, rectsrc.rows * (i / 2) + spacing * (i / 2));setshowwindow(rectdst, title2, rectsrc.rows, rectsrc.rows * (i / 2) + spacing * (i / 2));setshowwindow(wpMat1, title3, rectsrc.cols * 2, rectsrc.rows * (i / 2) + spacing * (i / 2));setshowwindow(wpMat2, title4, rectsrc.cols * 2, rectsrc.rows * (i / 2) + wpMat1.rows + spacing * (i / 2));}else {setshowwindow(rectsrc, title, (rectsrc.rows * 2 + wpMat1.cols), rectsrc.rows * (i / 2) + (i % 2) + spacing * (i / 2));setshowwindow(rectdst, title2, (rectsrc.rows * 2 + wpMat1.cols) + rectdst.rows, rectsrc.rows * (i / 2) + (i % 2) + spacing * (i / 2));setshowwindow(wpMat1, title3, (rectsrc.rows * 2 + wpMat1.cols) + rectsrc.cols * 2 , rectsrc.rows * (i / 2) + (i % 2) + spacing * (i / 2));setshowwindow(wpMat2, title4, (rectsrc.rows * 2 + wpMat1.cols) + rectsrc.cols * 2, rectsrc.rows * (i / 2) + (i % 2) + wpMat1.rows  + spacing * (i / 2));}imshow(title, rectsrc);imshow(title2, rectdst);imshow(title3, wpMat1);imshow(title4, wpMat2);//break;}waitKey();return 0;
}

b4b0e8a90e6d8c0009ceaa76e2e6c82b.png

8a6d1b8f66bb87a66182601cb92d19bc.png

往期精彩回顾

 

d17fb11e916b61cff8bb83d8bda20d51.jpeg

OpenCV极坐标变换函数warpPolar的使用

 

 

1a1b3915fdee12716678cdfa5f5fa54f.jpeg

Android Aidl跨进程通讯(四)--接口回调,服务端向客户端发送数据

 

 

eed55e25169de525589f7d609c1064a8.jpeg

Android Aidl跨进程通讯(三)--进阶使用

 

这篇关于OpenCV消除高亮illuminationChange函数的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/515539

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中