Causal Attention论文详解

2023-12-20 01:10
文章标签 详解 论文 attention causal

本文主要是介绍Causal Attention论文详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景介绍

Causal Attention论文是一篇因果推断(causal inference)和注意力(attention)结合的一篇文章,主要用在视觉和文本结合的领域,如VQA(Visual Question Answering)视觉问答。

VQA(Visual Question Answering)视觉问答的一个基本流程如下,对输入图进行self-attn编程得到K和V的向量,从文本得到Q的向量进行Attn计算,得到填空的结果(riding)。这个过程可以看成是一个因果推断的过程,对应的示意图如下X->Z->Y,X是输入,Z是模型过程,Y是输出,箭头表示相互依赖的关系。

在这里插入图片描述

实际中由于训练数据中存在bias偏差会导致结果不对,比如下图,看图回答问题(在屏幕上显示的是什么运动),由于预训练数据中Sport+ManSport+Screen出现次数多的话,在回答时self-attn关注点会更注意Sport+Man(即下图红框部分,导致回答错误结果为跳舞)。为此这篇论文中提出了Causal Attention的方法。

2. 详细说明

2.1 因果推断confounder

在因果推断(causal inference)中有一个概念是confounder(也有叫Confounding factor), 中文意思是干扰因子,在因果推断中表示影响推导的不可知因素,举个例子如下,药物Drug会帮助恢复Recovery,但隐藏的因素是一个人的性别Gender可能会同时影响使用什么样的药物恢复效果。这里的性别就是confounder

在这里插入图片描述

这里的推断流程从 X → Y X \rightarrow Y XY 变为了 X ← Z → Y X \leftarrow Z \rightarrow Y XZY,用 P ( y ∣ d o ( x ) ) P(y|do(x)) P(ydo(x)) 表示无偏估计的结果,也就是针对了相关的confounder因素进行了调整后的结果。公式表示如下,当且仅当没有confounder时, P ( y ∣ d o ( x ) ) = P ( y ∣ x ) P(y|do(x)) = P(y|x) P(ydo(x))=P(yx)

P ( y ∣ d o ( x ) ) = ∑ z P ( y ∣ x , z ) P ( z ) \begin{gather*} P(y | do(x)) = \sum_zP(y|x, z) P(z) \end{gather*} P(ydo(x))=zP(yx,z)P(z)

针对上面例子,对应的 P ( Y = r e c o v e r e d ∣ d o ( X = g i v e d r u g ) ) P(Y=recovered | do(X=give\ drug)) P(Y=recovereddo(X=give drug)) 等于如下:

P ( Y = r e c o v e r e d ∣ d o ( X = g i v e d r u g ) ) = P ( Y = r e c o v e r e d ∣ X = g i v e d r u g , Z = m a l e ) P ( Z = m a l e ) + P ( Y = r e c o v e r e d ∣ X = g i v e d r u g , Z = f e m a l e ) P ( Z = f e m a l e ) \begin{gather*} P(Y=recovered | do(X=give\ drug)) = P(Y=recovered | X=give\ drug, Z=male) P(Z=male) + P(Y=recovered | X=give\ drug, Z=female) P(Z=female) \end{gather*} P(Y=recovereddo(X=give drug))=P(Y=recoveredX=give drug,Z=male)P(Z=male)+P(Y=recoveredX=give drug,Z=female)P(Z=female)

在训练过程中数据bias就是由于cofounder(这里也被称为common sense的常识)引起的,如下图,C表示常识,常识存在多种,person can ride horse是常识中的一种, X表示通过person can ride horse产生的一个图片和对应的prompt(person can ride ___),M表示通过Faster-RCNN检测出来的物体object(personhorse), Y表示语言模型产生的推理结果person can ride horse。在训练中一个理想合法的推导是 X → M → Y X \rightarrow M \rightarrow Y XMY,但实际中常识C也会对最终的结果Y有影响,即 X ← C → M → Y X \leftarrow C \rightarrow M \rightarrow Y XCMY。训练中计算的是按 P ( Y ∣ X ) P(Y|X) P(YX),而实际中应该按 P ( Y ∣ d o ( X ) ) P(Y|do(X)) P(Ydo(X)) 来计算。

在这里插入图片描述

2.2 Causal Attention公式表示

之前的attention机制可以看成是一个前向的因果推理图(X->Z->Y)。基于这个图Causal Attention中把attention拆为两部分,一个是选择器(selector),用于从数据X中选择合适的知识Z;另一个是推理器(predictor),通过选择的Z去探索推理结果Y

以VQA为例,训练集是已知的,也就是计算的可观测的P(Y|X), Z表示训练中已有的知识,由于Z可以看成是从X中抽样出来一部分数据,所以计算的部分也叫为IS-Sampling。公式如下:

在这里插入图片描述

在训练过程中抽样的数据集存在潜在的偏差(bias),即Z <- X <-> Y, 需要进行修正,ZY之前的因果影响表示为 P ( Y ∣ d o ( Z ) ) P(Y|do(Z)) P(Ydo(Z)), X -> Z的这部分可以通过对X进行拆解为多个不同的 { x } \{x\} {x} 来表示,公式如下, x表示可能的输入,这里叫做CS-Samping
在这里插入图片描述

最终公式(2)代入公式(1)得到如下结果:
在这里插入图片描述

2.3 Causal Attention网络实现

P ( Y ∣ Z , X ) P(Y|Z,X) P(YZ,X) 使用一个softmax层进行计算;如公式(3)所示,为了计算 P ( Y ∣ d o ( X ) ) P(Y|do(X)) P(Ydo(X)) 要对XZ进行采样,但是前向代价过大,所以采用了Normalized Weighted Geometric Mean (NWGM) 的近似方法,近似后公式如下, f ( ⋅ ) 、 h ( ⋅ ) f(\cdot)、h(\cdot) f()h() 表示把输入X进行embedding后成为两个query set。
在这里插入图片描述

使用attention进行表示上述计算的话,In-Sample attention (IS-ATT)的结果 Z ^ \hat{Z} Z^如下, K I 和 V I K_I 和 V_I KIVI来自当前的输入样本,如RoI的特征; Q I Q_I QI自于 h ( X ) h(X) h(X),在top-down attention中 q I q_I qI为上下文的embedding,在self-attention中 q I q_I qI也是RoI的特征。
在这里插入图片描述

Cross-Sample attention (CS-ATT)的结果 X ^ \hat{X} X^如下, K C 和 V C K_C 和 V_C KCVC来自训练集中的其他样本, Q C Q_C QC自于 f ( X ) f(X) f(X)
在这里插入图片描述

对应的网络图如下:
在这里插入图片描述

2.4 Causal Attention在堆叠attention网络中的应用

2.4.1 Transformer+CATT

在transformer中encoder和decoder实现如下图, [ V I ] E [V_I]_E [VI]E [ V C ] E [V_C]_E [VC]E分别表示为IS-ATTCS-ATT的encoder输出, Z ^ \hat{Z} Z^ X ^ \hat{X} X^表示IS-ATTCS-ATT的decoder输出。
在这里插入图片描述

2.4.2 LXMERT+CATT

在这里插入图片描述

3. 参考

  • Causal Attention for Vision-Language Tasks
  • 论文笔记:Causal Attention for Vision-Language Tasks
  • LXMERT: Learning Cross-Modality Encoder Representations from Transformers
  • LXMERT
  • Confounding
  • Confounders: machine learning’s blindspot

这篇关于Causal Attention论文详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514350

相关文章

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD