Python Opencv实践 - 手部跟踪

2023-12-20 01:04

本文主要是介绍Python Opencv实践 - 手部跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        使用mediapipe库做手部的实时跟踪,关于mediapipe的介绍,请自行百度。

        mediapipe做手部检测的资料,可以参考这里:

MediaPipe Hands: On-device Real-time Hand Tracking 论文阅读笔记 - 知乎论文地址: https://arxiv.org/abs/2006.10214v1Demo地址:https://hand.mediapipe.dev/研究机构: Google Research 会议: CVPR2020 开始介绍之前,先贴一个模型的流程图,让大家对系统架构有个整体的概念 0. 摘…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/431523776MediaPipe基础(4)Hands(手)_mediapipe hands-CSDN博客文章浏览阅读1.2w次,点赞6次,收藏66次。1.摘要在各种技术领域和平台,感知手的形状和运动的能力是改善用户体验的重要组成部分。例如,它可以构成手语理解和手势控制的基础,还可以在增强现实中将数字内容和信息叠加在物理世界之上。虽然对人们来说很自然,但强大的实时手部感知绝对是一项具有挑战性的计算机视觉任务,因为手经常遮挡自己或彼此(例如手指/手掌遮挡和握手)并且缺乏高对比度模式。MediaPipe Hands 是一种高保真手和手指跟踪解决方案。它采用机器学习 (ML) 从单个帧中推断出手的 21 个 3D 地标。当前最先进的方法主要依赖于强大的桌面环_mediapipe handshttps://blog.csdn.net/weixin_43229348/article/details/120530937

        做手部跟踪时需要搞清楚手部的landmarks,如下图:

         需要安装mediapipe,直接使用pip install mediapipe即可。

        关于mediapipe.solution.hands的构造方法参数简单说明如下:

        static_image_mode为True的话表示只做检测,为False表示当置信度低于阈值时会做检测,如果跟踪的置信度较好则不做检测只做跟踪。

        max_num_hands参数就是其意思,最大检测的手数量

        min_detection_confidence最小检测置信度阈值,高于此值为检测成功,默认0.5

        min_tracking_confidence最小跟踪置信度阈值,高于此值表示手部跟踪成功,默认0.5

        

        代码如下,仅供参考:

import cv2 as cv
import mediapipe as mp
import timeclass HandDetector():def __init__(self, mode=False,maxNumHands=2,modelComplexity=1,minDetectionConfidence=0.5,minTrackingConfidence=0.5):self.mode = modeself.maxNumHands = maxNumHandsself.modelComplexity = modelComplexityself.minDetectionConfidence = minDetectionConfidenceself.minTrackingConfidence = minTrackingConfidence#创建mediapipe的solutions.hands对象self.mpHands = mp.solutions.handsself.handsDetector = self.mpHands.Hands(self.mode, self.maxNumHands, self.modelComplexity, self.minDetectionConfidence, self.minTrackingConfidence)#创建mediapipe的绘画工具mpDrawUtils = mp.solutions.drawing_utilsdef findHands(self, img, drawOnImage=True):#mediapipe手部检测器需要输入图像格式为RGB#cv默认的格式是BGR,需要转换imgRGB = cv.cvtColor(img, cv.COLOR_BGR2RGB)#调用手部检测器的process方法进行检测self.results = self.handsDetector.process(imgRGB)#print(results.multi_hand_landmarks)#如果multi_hand_landmarks有值表示检测到了手if self.results.multi_hand_landmarks:#遍历每一只手的landmarksfor handLandmarks in self.results.multi_hand_landmarks:if drawOnImage:mpDrawUtils.draw_landmarks(img, handLandmarks, self.mpHands.HAND_CONNECTIONS)return img;#从结果中查询某只手的landmark listdef findHandPositions(self, img, handID=0, drawOnImage=True):landmarkList = []if self.results.multi_hand_landmarks:handLandmarks = self.results.multi_hand_landmarks[handID]for id,landmark in enumerate(handLandmarks.landmark):#处理每一个landmark,将landmark里的X,Y(比例)转换为帧数据的XY坐标h,w,c = img.shapecenterX,centerY = int(landmark.x * w), int(landmark.y * h)landmarkList.append([id, centerX, centerY])if (drawOnImage):#将landmark绘制成圆cv.circle(img, (centerX,centerY), 8, (0,255,0), cv.FILLED)return landmarkListdef DisplayFPS(img, preTime):curTime = time.time()if (curTime - preTime == 0):return curTime;fps = 1 / (curTime - preTime)cv.putText(img, "FPS:" + str(int(fps)), (10,70), cv.FONT_HERSHEY_PLAIN,3, (0,255,0), 3)return curTimedef main():video = cv.VideoCapture('../../SampleVideos/hand.mp4')#FPS显示preTime = 0handDetector = HandDetector()while True:ret,frame = video.read()if ret == False:break;frame = handDetector.findHands(frame)hand0Landmarks = handDetector.findHandPositions(frame)#if len(hand0Landmarks) != 0:#print(hand0Landmarks)preTime = DisplayFPS(frame, preTime)cv.imshow('Real Time Hand Detection', frame)if cv.waitKey(1) & 0xFF == ord('q'):break;video.release()cv.destroyAllWindows()if __name__ == "__main__":main()

        运行效果:

 

Python Opencv实践 - 手部跟踪

这篇关于Python Opencv实践 - 手部跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514329

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo