YOLOv8重要文件解读

2023-12-19 23:15
文章标签 yolov8 解读 重要文件

本文主要是介绍YOLOv8重要文件解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊 | 接辅导、项目定制]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45) 

D:\ultralytics-main\ultralytics-main\ultralytics\nn\models\** 目录下的文件与YOLOv5commonpy中文件起到的作用相同,对应模型中的相应模块 。

conv.py文件 

def autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn p

函数的参数包括:

  • k:卷积核的大小,可以是整数或整数列表。
  • p:填充大小,可以是整数或整数列表,如果未提供,则自动计算。
  • d:膨胀率(dilation rate),默认为1。
class Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class Conv2(Conv):"""Simplified RepConv module with Conv fusing."""def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False)  # add 1x1 convdef forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x) + self.cv2(x)))def forward_fuse(self, x):"""Apply fused convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def fuse_convs(self):"""Fuse parallel convolutions."""w = torch.zeros_like(self.conv.weight.data)i = [x // 2 for x in w.shape[2:]]w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()self.conv.weight.data += wself.__delattr__('cv2')self.forward = self.forward_fuse

__init__ 方法用于初始化卷积层,参数包括输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充大小 p,分组数 g,膨胀率 d,以及是否使用激活函数 act

class LightConv(nn.Module):"""Light convolution with args(ch_in, ch_out, kernel).https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, c2, k=1, act=nn.ReLU()):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv1 = Conv(c1, c2, 1, act=False)self.conv2 = DWConv(c2, c2, k, act=act)def forward(self, x):"""Apply 2 convolutions to input tensor."""return self.conv2(self.conv1(x))class DWConv(Conv):"""Depth-wise convolution."""def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation"""Initialize Depth-wise convolution with given parameters."""super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)

LightConv类

  • LightConv 类表示轻量级卷积,包含两个卷积层的堆叠。

DWConv类

  • DWConv 类表示深度可分离卷积。
  • 在初始化过程中,调用了父类 Conv__init__ 方法,其中 g 参数被设置为输入通道数和输出通道数的最大公约数,从而实现深度可分离卷积。
class DWConvTranspose2d(nn.ConvTranspose2d):"""Depth-wise transpose convolution."""def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out"""Initialize DWConvTranspose2d class with given parameters."""super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))class ConvTranspose(nn.Module):"""Convolution transpose 2d layer."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):"""Initialize ConvTranspose2d layer with batch normalization and activation function."""super().__init__()self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Applies transposed convolutions, batch normalization and activation to input."""return self.act(self.bn(self.conv_transpose(x)))def forward_fuse(self, x):"""Applies activation and convolution transpose operation to input."""return self.act(self.conv_transpose(x))
  1. DWConvTranspose2d类

    • DWConvTranspose2d 类表示深度可分离的转置卷积。
    • 在初始化过程中,调用了父类 nn.ConvTranspose2d__init__ 方法,并设置了 groups 参数为输入通道数和输出通道数的最大公约数。
  2. ConvTranspose类

    • ConvTranspose 类表示转置卷积 2D 层,与普通转置卷积相比,它包含了可选的批归一化和激活函数。
    • __init__ 方法用于初始化转置卷积,参数包括输入通道数 c1,输出通道数 c2,卷积核大小 k,步幅 s,填充参数 p,以及是否使用批归一化 bn 和激活函数 act
    • 在初始化过程中,创建了转置卷积层 conv_transpose,以及可选的批归一化层 bn 和激活函数 act
class Focus(nn.Module):"""Focus wh information into c-space."""def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):"""Initializes Focus object with user defined channel, convolution, padding, group and activation values."""super().__init__()self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)# self.contract = Contract(gain=2)def forward(self, x):"""Applies convolution to concatenated tensor and returns the output.Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2)."""return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))# return self.conv(self.contract(x))
  • Focus类(用于在通道维度上聚焦宽高信息

    • Focus 类继承自 nn.Module,表示将宽高信息集中到通道空间的操作。
    • 在初始化过程中,创建了一个包含四个输入通道的卷积层 self.conv。卷积层将四个通道的信息进行卷积操作,然后输出到通道维度上,用于集中宽高信息。
  • forward 方法:

    • forward 方法实现了前向传播操作。
    • 输入张量的形状为 (b, c, w, h),其中 b 是批量大小,c 是通道数,wh 是宽和高。
    • 通过 torch.cat 将输入张量沿着宽和高方向进行四次拼接,得到一个新的张量,形状为 (b, 4c, w/2, h/2)。
class GhostConv(nn.Module):"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""def __init__(self, c1, c2, k=1, s=1, g=1, act=True):"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups andactivation."""super().__init__()c_ = c2 // 2  # hidden channelsself.cv1 = Conv(c1, c_, k, s, None, g, act=act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)def forward(self, x):"""Forward propagation through a Ghost Bottleneck layer with skip connection."""y = self.cv1(x)return torch.cat((y, self.cv2(y)), 1)

Ghost Convolution 是通过两个卷积层组合的轻量级卷积操作,其主要功能是在保持模型轻量化的同时,增加网络的感受野和表征能力。

两个卷积层组合的轻量级卷积操作:

  • 首先在初始化两个卷积层 self.cv1 = Conv(c1, c_, k, s, None, g, act=act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
  • 在forward 方法中实现两个卷积层组合:y = self.cv1(x) 将输入张量 x 传递给第一个卷积层 self.cv1 进行卷积,得到输出张量 y return torch.cat((y, self.cv2(y)), 1) 将输出张量 yself.cv2(y) 进行通道维度上的拼接,得到最终的输出。

这篇关于YOLOv8重要文件解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514046

相关文章

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核