【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)

本文主要是介绍【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)

分类: total variation Image denoising Programming Code   1196人阅读  评论(0)  收藏  举报
image matlab reference algorithm input website

Reference

[1] L. Rudin, S. Osher, E. Fatemi, 'Nonlinear Total Variation based noise removal algorithm', Physica D 60 259-268, 1992.

Related Website

[2] Total Variation Denoising : http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

 

function J=tv(I,iter,dt,ep,lam,I0,C)

%% Private function: tv (by Guy Gilboa).

%% Total Variation denoising.

%% Example: J=tv(I,iter,dt,ep,lam,I0)

%% Input: I    - image (double array gray level 1-256),

%%        iter - num of iterations,

%%        dt   - time step [0.2],

%%        ep   - epsilon (of gradient regularization) [1],

%%        lam  - fidelity term lambda [0],

%%        I0   - input (noisy) image [I0=I]

%%       (default values are in [])

%% Output: evolved image

 

if ~exist('ep')

   ep=1;

end

if ~exist('dt')

   dt=ep/5;  % dt below the CFL bound

end

if ~exist('lam')

   lam=0;

end

if ~exist('I0')

       I0=I;

end

if ~exist('C')

       C=0;

end

[ny,nx]=size(I); ep2=ep^2;

 

for i=1:iter,  %% do iterations

   % estimate derivatives

   I_x = (I(:,[2:nx nx])-I(:,[1 1:nx-1]))/2;

       I_y = (I([2:ny ny],:)-I([1 1:ny-1],:))/2;

       I_xx = I(:,[2:nx nx])+I(:,[1 1:nx-1])-2*I;

       I_yy = I([2:ny ny],:)+I([1 1:ny-1],:)-2*I;

       Dp = I([2:ny ny],[2:nx nx])+I([1 1:ny-1],[1 1:nx-1]);

       Dm = I([1 1:ny-1],[2:nx nx])+I([2:ny ny],[1 1:nx-1]);

       I_xy = (Dp-Dm)/4;

   % compute flow

   Num = I_xx.*(ep2+I_y.^2)-2*I_x.*I_y.*I_xy+I_yy.*(ep2+I_x.^2);

   Den = (ep2+I_x.^2+I_y.^2).^(3/2);

   I_t = Num./Den + lam.*(I0-I+C);

   I=I+dt*I_t;  %% evolve image by dt

end % for i

%% return image

%J=I*Imean/mean(mean(I)); % normalize to original mean

这篇关于【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514036

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A