【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)

本文主要是介绍【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)

分类: total variation Image denoising Programming Code   1196人阅读  评论(0)  收藏  举报
image matlab reference algorithm input website

Reference

[1] L. Rudin, S. Osher, E. Fatemi, 'Nonlinear Total Variation based noise removal algorithm', Physica D 60 259-268, 1992.

Related Website

[2] Total Variation Denoising : http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html

 

function J=tv(I,iter,dt,ep,lam,I0,C)

%% Private function: tv (by Guy Gilboa).

%% Total Variation denoising.

%% Example: J=tv(I,iter,dt,ep,lam,I0)

%% Input: I    - image (double array gray level 1-256),

%%        iter - num of iterations,

%%        dt   - time step [0.2],

%%        ep   - epsilon (of gradient regularization) [1],

%%        lam  - fidelity term lambda [0],

%%        I0   - input (noisy) image [I0=I]

%%       (default values are in [])

%% Output: evolved image

 

if ~exist('ep')

   ep=1;

end

if ~exist('dt')

   dt=ep/5;  % dt below the CFL bound

end

if ~exist('lam')

   lam=0;

end

if ~exist('I0')

       I0=I;

end

if ~exist('C')

       C=0;

end

[ny,nx]=size(I); ep2=ep^2;

 

for i=1:iter,  %% do iterations

   % estimate derivatives

   I_x = (I(:,[2:nx nx])-I(:,[1 1:nx-1]))/2;

       I_y = (I([2:ny ny],:)-I([1 1:ny-1],:))/2;

       I_xx = I(:,[2:nx nx])+I(:,[1 1:nx-1])-2*I;

       I_yy = I([2:ny ny],:)+I([1 1:ny-1],:)-2*I;

       Dp = I([2:ny ny],[2:nx nx])+I([1 1:ny-1],[1 1:nx-1]);

       Dm = I([1 1:ny-1],[2:nx nx])+I([2:ny ny],[1 1:nx-1]);

       I_xy = (Dp-Dm)/4;

   % compute flow

   Num = I_xx.*(ep2+I_y.^2)-2*I_x.*I_y.*I_xy+I_yy.*(ep2+I_x.^2);

   Den = (ep2+I_x.^2+I_y.^2).^(3/2);

   I_t = Num./Den + lam.*(I0-I+C);

   I=I+dt*I_t;  %% evolve image by dt

end % for i

%% return image

%J=I*Imean/mean(mean(I)); % normalize to original mean

这篇关于【转】 Matlab Code = 全变分图像去噪方法(Total Variation-based Image Denoising)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514036

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI