python识别增强静脉清晰度 opencv-python图像处理案例

2023-12-19 20:52

本文主要是介绍python识别增强静脉清晰度 opencv-python图像处理案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.任务说明

    用python实现静脉清晰度提升。

二.代码实现

import cv2
import numpy as npdef enhance_blood_vessels(image):# 调整图像对比度和亮度enhanced_image = cv2.convertScaleAbs(image, alpha=0.5, beta=100)# 应用CLAHE(对比度受限的自适应直方图均衡化)clahe = cv2.createCLAHE(clipLimit=30.0, tileGridSize=(8, 8))enhanced_image = clahe.apply(enhanced_image)# 应用中值滤波平滑图像enhanced_image = cv2.medianBlur(enhanced_image, 1)return enhanced_imagedef extract_blood_vessels(image):# 阈值分割提取静脉血管ret, thresholded_image = cv2.threshold(image, 100, 255, cv2.THRESH_BINARY)# 使用形态学操作(膨胀和腐蚀)进一步清理和连接血管kernel = np.ones((3, 3), np.uint8)thresholded_image = cv2.morphologyEx(thresholded_image, cv2.MORPH_OPEN, kernel)return thresholded_image# 读取图像
image = cv2.imread('input-pic.png', cv2.IMREAD_GRAYSCALE)# 图像增强
enhanced_image = enhance_blood_vessels(image)# 提取静脉血管
vessels_image = extract_blood_vessels(enhanced_image)
# 将灰度图转换为彩色图
color_image = np.zeros((enhanced_image.shape[0], enhanced_image.shape[1], 3), dtype=np.uint8)
for i in range(enhanced_image.shape[0]):for j in range(enhanced_image.shape[1]):color_image[i][j] = (enhanced_image[i][j], enhanced_image[i][j], 100)  # 使用灰度值作为RGB通道的值# 显示彩色图
cv2.imshow('Color Image', color_image)
# 显示图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.imshow('Blood Vessels', vessels_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

三.识别效果

这篇关于python识别增强静脉清晰度 opencv-python图像处理案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513662

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符