矩阵式键盘实现的电子密码锁

2023-12-19 18:12

本文主要是介绍矩阵式键盘实现的电子密码锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#include<reg51.h>   //包含51单片机寄存器定义的头文件
sbit P14=P1^4;      //将P14位定义为P1.4引脚
sbit P15=P1^5;      //将P15位定义为P1.5引脚
sbit P16=P1^6;      //将P16位定义为P1.6引脚
sbit P17=P1^7;      //将P17位定义为P1.7引脚
sbit sound=P3^7;    //将sound位定义为P3.7
unsigned char keyval;    //储存按键值
/**************************************************************
函数功能:延时输出音频
**************************************************************/
 void delay(void)   
{
   unsigned char i;
    for(i=0;i<200;i++)
             ;
 }

/**************************************************************
函数功能:软件延时子程序
**************************************************************/
 void delay20ms(void)   
{
   unsigned char i,j;
    for(i=0;i<100;i++)
     for(j=0;j<60;j++)
           ;
 }
/**************************************************************
函数功能:主函数
**************************************************************/ 
 void main(void)
 {
   unsigned char D[ ]={0,8,0,8,7,4,11};      //设定密码
   EA=1;                  //开总中断
    ET0=1;                 //定时器T0中断允许         
    TMOD=0x01;            //使用定时器T0的模式1
    TH0=(65536-500)/256;  //定时器T0的高8位赋初值
    TL0=(65536-500)%256;  //定时器T0的高8位赋初值
    TR0=1;                //启动定时器T0
    keyval=0xff;          //按键值初始化
    
    while(keyval!=D[0])   //第一位密码输入不正确,等待
         ;         
    while(keyval!=D[1])   //第二位密码输入不正确,等待
         ;
    while(keyval!=D[2])   //第三位密码输入不正确,等待
         ;    
    while(keyval!=D[3])   //第四位密码输入不正确,等待
         ;
    while(keyval!=D[4])   //第五位密码输入不正确,等待
         ;
    while(keyval!=D[5])   //第六位密码输入不正确,等待
         ;   
    while(keyval!=D[6])  //没有输入“OK”,等待
       ;         
     P3=0xfe;           //P3.0引脚输出低电平,点亮LED

}
/**************************************************************
函数功能:定时器0的中断服务子程序,进行键盘扫描,判断键位
**************************************************************/ 
  void time0_interserve(void) interrupt 1 using 1    //定时器T0的中断编号为1,使用第一组寄存器
  {
     unsigned char i;
     TR0=0;                  //关闭定时器T0      
     P1=0xf0;                 //所有行线置为低电平“0”,所有列线置为高电平“1”
      if((P1&0xf0)!=0xf0)      //列线中有一位为低电平“0”,说明有键按下
         delay20ms();           //延时一段时间、软件消抖
      if((P1&0xf0)!=0xf0)      //确实有键按下
        {
           P1=0xfe;             //第一行置为低电平“0”(P1.0输出低电平“0”)
           if(P14==0)           //如果检测到接P1.4引脚的列线为低电平“0”
             keyval=1;            //可判断是S1键被按下
           if(P15==0)             //如果检测到接P1.5引脚的列线为低电平“0”
             keyval=2;            //可判断是S2键被按下
           if(P16==0)             //如果检测到接P1.6引脚的列线为低电平“0”
             keyval=3;            //可判断是S3键被按下
           if(P17==0)            //如果检测到接P1.7引脚的列线为低电平“0”
             keyval=4;           //可判断是S4键被按下

           P1=0xfd;             //第二行置为低电平“0”(P1.1输出低电平“0”)
          if(P14==0)           //如果检测到接P1.4引脚的列线为低电平“0”
             keyval=5;            //可判断是S5键被按下
           if(P15==0)             //如果检测到接P1.5引脚的列线为低电平“0”
             keyval=6;            //可判断是S6键被按下
           if(P16==0)             //如果检测到接P1.6引脚的列线为低电平“0”
             keyval=7;            //可判断是S7键被按下
           if(P17==0)            //如果检测到接P1.7引脚的列线为低电平“0”
             keyval=8;           //可判断是S8键被按下
        
           P1=0xfb;             //第三行置为低电平“0”(P1.2输出低电平“0”)
        if(P14==0)          //如果检测到接P1.4引脚的列线为低电平“0”
             keyval=9;          //可判断是S9键被按下
           if(P15==0)           //如果检测到接P1.5引脚的列线为低电平“0”
             keyval=0;         //可判断是S10键被按下
           if(P16==0)          //如果检测到接P1.6引脚的列线为低电平“0”
             keyval=11;        //可判断是S11键被按下
       if(P17==0)          //如果检测到接P1.7引脚的列线为低电平“0”
                         keyval=12;        //可判断是S12键被按下
            
                       P1=0xf7;             //第四行置为低电平“0”(P1.3输出低电平“0”)
                    if(P14==0)          //如果检测到接P1.4引脚的列线为低电平“0”
                         keyval=13;          //可判断是S13键被按下
                       if(P15==0)           //如果检测到接P1.5引脚的列线为低电平“0”
                         keyval=14;         //可判断是S14键被按下
                       if(P16==0)          //如果检测到接P1.6引脚的列线为低电平“0”
                         keyval=15;        //可判断是S15键被按下
                       if(P17==0)          //如果检测到接P1.7引脚的列线为低电平“0”
                         keyval=16;        //可判断是S16键被按下
          for(i=0;i<200;i++)  //让P3.7引脚电平不断取反输出音频
           {
              sound=0;
              delay();
                 sound=1;
                 delay();
           }
        }
     TR0=1;                    //开启定时器T0
     TH0=(65536-500)/256;  //定时器T0的高8位赋初值
      TL0=(65536-500)%256;  //定时器T0的高8位赋初值         
 }


 

这篇关于矩阵式键盘实现的电子密码锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/513203

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S