[LeetCode]动态规划,一招团灭最小路径问题

2023-12-19 14:32

本文主要是介绍[LeetCode]动态规划,一招团灭最小路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划是求解“最小路径”的常用方法之一,LeetCode上关于“最小路径”的题目如下:

  • 64.最小路径和:https://leetcode-cn.com/problems/minimum-path-sum/
  • 120.三角形最小路径和:https://leetcode-cn.com/problems/triangle/
  • 931.下降路径最小和:https://leetcode-cn.com/problems/minimum-falling-path-sum/
  • 1289.下降路径最小和Ⅱ:https://leetcode-cn.com/problems/minimum-falling-path-sum-ii/

关于动态规划,可以访问Jungle之前的博客:

  • [LeetCode]动态规划及LeetCode题解分析
  • [LeetCode]动态规划LeetCode[简单]题全解
  • [LeetCode]动态规划之打家劫舍ⅠⅡⅢ
  • [LeetCode]动态规划,一举歼灭“股票买卖的最佳时机“问题!

本文,Jungle将采用动态规划,一举解决上述问题。

1.思路分析

我们以64.最小路径和为例,分析采用动态规划求解该类问题的基本思路。题目描述如下:

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

 在之前的文章我们已经提到过,使用动态规划求解问题的三大步骤,这里我们也将遵循这三大步骤:

(1)明确数组元素代表的含义

题目中是给定二维地图,我们使用二维数组dp[][]。那么对于数组元素dp[i][j]代表什么呢?——机器人走到网格(i,j)时的最小路径值。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中明确告诉“机器人每次只能向下或者向右移动一步”,因此,机器人走到(i,j),有可能是从(i-1,j)向下走,也可能是从(i,j-1)向右走一步。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j]和dp[i][j-1]的大小。也就是说,dp[i][j]=grid[i][j]+min(dp[i-1][j]+dp[i][j-1]).

这里有没有特殊情况呢?显然有的,那就是机器人位于网格边界时(网格上面第一横排和左边第一竖排),上述递推关系需要修改:

  • 当机器人位于网格第一横排时,i=0,dp[0][j]只能从dp[0][j-1]向右移动一步得到,即dp[0][j] = grid[0][j]+dp[0][j-1];
  • 当机器人位于网格第一竖排时,j=0,dp[i][0]只能从dp[i-1][0]向下移动一步得到,即dp[i][0] =grid[i-1][0]+dp[i-1][0];

(3)数组初始化

机器人最初位于网格左上角,dp[0][0]是唯一开始点,所以dp[0][0] = grid[0][0].

(4)代码

本题不必重新声明二维数组dp,可以直接利用原有二维数组。

int minPathSum(vector<vector<int>>& grid) {int i = 0, j = 0;for (i = 0; i<grid.size(); i++){for (j = 0; j<grid[0].size(); j++){if (i == 0 && j == 0){continue;}else if (i == 0){grid[i][j] += grid[i][j - 1];}else if (j == 0){grid[i][j] += grid[i - 1][j];}else{grid[i][j] = grid[i][j] + (grid[i][j - 1]<grid[i - 1][j] ? grid[i][j - 1] : grid[i - 1][j]);}}}return grid[grid.size() - 1][grid[0].size() - 1];
}

2.LeetCode题解

64. 最小路径和

见上述分析示例。

120. 三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

这题把矩形换成了三角形。有什么区别?总体上思路是一样的,区别在于边界条件。

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径值。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“每一步只能移动到下一行中相邻的结点上”,因此,走到(i,j),有可能是从(i-1,j-1)向下走,也可能是从(i-1,j)向下走。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j]和dp[i][j-1]的大小。也就是说,dp[i][j]=triangle[i][j]+min(dp[i-1][j]+dp[i-1][j]).

这里同样有特殊情况——位于网格边界时。比上一题更加复杂的是,这道题有三角形顶点三角形两腰上三个边界条件需要考虑,上述递推关系需要修改:

  • 当位于三角形左腰上时,即j=0,dp[i][0]只能从dp[i-1][0]向下移动一步得到,即dp[i][j] = triangle[i][j] + dp[i - 1][j]
  • 当位于三角形右腰上时,即i=j,dp[i][j]只能从dp[i-1][j-1]向下移动一步得到,即dp[i][j] = triangle[i][j] + dp[i - 1][j - 1]

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量min保存最小值。

(3)数组初始化

最初位于三角形顶点,dp[0][0]是唯一开始点,所以dp[0][0] = triangle[0][0].

(4)代码

int minimumTotal(vector<vector<int>>& triangle) {int col = triangle.size();if (col == 0){return 0;}if (col == 1){return triangle[0][0];}int **dp = new int*[col];for (int i = 0; i<col; i++){dp[i] = new int[i + 1];}dp[0][0] = triangle[0][0];int min = 0;for (int i = 1; i<col; i++){for (int j = 0; j<triangle[i].size(); j++){if (j == 0){dp[i][j] = triangle[i][j] + dp[i - 1][j];min = dp[i][j];}else if (j == i){dp[i][j] = triangle[i][j] + dp[i - 1][j - 1];}else{dp[i][j] = triangle[i][j] + (dp[i - 1][j - 1] < dp[i - 1][j] ? dp[i - 1][j - 1] : dp[i - 1][j]);}if (dp[i][j]<min){min = dp[i][j];}}}return min;
}

931. 下降路径最小和

给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和。

下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列。

 

示例:

输入:[[1,2,3],[4,5,6],[7,8,9]]
输出:12
解释:
可能的下降路径有:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
和最小的下降路径是 [1,4,7],所以答案是 12。

提示:

1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径和。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“从每一行中选择一个元素”并且“在下一行选择的元素和当前行所选元素最多相隔一列”,因此,走到(i,j),可能是从(i-1,j-1)、(i-1,j)或者(i-1,j+1)三个位置出发达到。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j-1]、dp[i-1][j]和dp[i-1][j+1]的大小,即dp[i][j] = A[i][j]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])).

特殊情况——位于网格边界时:

  • 当位于左边界时,即j=0,dp[i][0]只能从dp[i-1][j]或dp[i-1][j+1]出发达到,即dp[i][j] = A[i][j]+min(dp[i-1][j],dp[i-1][j+1])
  • 当位于右边界时,即j=len-1,dp[i][j]只能从dp[i-1][j-1]或dp[i-1][j]出发达到,即dp[i][j] = A[i][j]+min(dp[i-1][j-1],dp[i-1][j])​​​​​​​

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量Min保存最小值。

(3)数组初始化

题目要求,“下降路径可以从第一行中的任何元素开始”,所以dp[0][j] = A[0][j]

(4)代码

int minFallingPathSum(vector<vector<int>>& A) {int row = A.size();int col = A[0].size();if (row == 0 || col == 0){return 0;}if (row == 1){sort(A[0].begin(), A[0].end());return A[0][0];}vector<vector<int>>dp(row, vector<int>(col, 0));int Min = 0;for (int j = 0; j<col; j++){dp[0][j] = A[0][j];}for (int i = 1; i<row; i++){for (int j = 0; j<col; j++){if (j == 0){dp[i][j] = A[i][j] + min(dp[i - 1][j], dp[i - 1][j + 1]);}else if (j == col - 1){dp[i][j] = A[i][j] + min(dp[i - 1][j - 1], dp[i - 1][j]);}else{dp[i][j] = A[i][j] + min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1]));}if (i == row - 1){if (j == 0){Min = dp[i][0];}if (dp[i][j]<Min){Min = dp[i][j];}}}}return Min;
}

1289. 下降路径最小和 II

给你一个整数方阵 arr ,定义「非零偏移下降路径」为:从 arr 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。

请你返回非零偏移下降路径数字和的最小值。

 

示例 1:

输入:arr = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。
 

提示:

1 <= arr.length == arr[i].length <= 200
-99 <= arr[i][j] <= 99

这一题与上一题的区别在于,“按顺序选出来的数字中,相邻数字不在原数组的同一列”。这道题标记为“困难”,难吗?不难。

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径和。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“从每一行中选择一个元素”并且“相邻数字不在原数组的同一列”,因此,走到(i,j),是由除了(i-1,j)之外的其他网格出发达到。要求路径最小,因此需要找到在(i,j)上一步的最小路径值。所以,dp[i][j] = arr[i][j]+min_dp(dp,i-1,j),其中min_dp是一个函数,返回第i-1行中的最小路径值,第三个参数代表当前的j,所以在查找第i-1行中的最小路径值时,要排除掉第j个位置的路径值。

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量res保存最小值。

(3)数组初始化

题目要求,“下降路径可以从第一行中的任何元素开始”,所以dp[0][j] = arr[0][j]

(4)代码

int min_dp(vector<vector<int>>& dp, int i, int not_j){int Min = 201;for (int jj = 0; jj<dp.size(); jj++){if (jj == not_j){continue;}if (dp[i][jj]<Min){Min = dp[i][jj];}}return Min;
}
int minFallingPathSum(vector<vector<int>>& arr) {int len = arr.size();if (len == 0){return 0;}if (len == 1){return arr[0][0];}vector<vector<int>>dp(len, vector<int>(len, 0));int res;for (int k = 0; k<len; k++){dp[0][k] = arr[0][k];}for (int i = 1; i<len; i++){for (int j = 0; j<len; j++){dp[i][j] = arr[i][j] + min_dp(dp, i - 1, j);if (i == len - 1){if (j == 0){res = dp[i][j];}else if (dp[i][j]<res){res = dp[i][j];}}}}return res;
}

欢迎在评论区交流!

原创不易,谢谢点赞! 


欢迎关注知乎专栏:Jungle是一个用Qt的工业Robot

欢迎关注Jungle的微信公众号:Jungle笔记

 

这篇关于[LeetCode]动态规划,一招团灭最小路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512552

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map