R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?

本文主要是介绍R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一句话结论:只要有网有流量,直接用长WKT传递给参数【geometry】、参数【limit】配合参数【start】获取所有记录。

当我在阅读 【rgbif】 给出的用户手册时,注意到 【occ_search】 强调了 参数 【geometry】使用的wkt格式字符串长度。

文中如是写道:

当处理 长WKT字符串(>1500个字符) 时,可以通过参数geom_big进行设置:asis:此值为默认值。不做任何处理,只传递WKT字符串。axe:这个选项将使用sf包将WKT字符串切割成数个多边形,然后根据每个多边形块单独进行数据请求,然后将所有数据组合在一起返回。请注意,如果WKT字符串不是多边形类型,将退回到asis,因为没有办法分割线字符串等。这个选项在大多数情况下会比其他两个选项慢。但是,这种多边形分割方法不会像使用bbox选项那样存在想要多少记录和实际返回多少记录之间脱节的问题。该方法使用sf::st_make_grid和sf::st_intersection,它们有两个参数cellsize和n。您可以通过调整geom_size和geom_n来调整这些参数。在切换返回的WKT字符串的数量方面,geom_size似乎更有用。请参阅wkt_parse手动从较大的WKT字符串中分解WKT边界框,或者将较大的WKT字符串分解为许多较小的WKT字符串。bbox:这个选项检查您的WKT字符串是否超过1500个字符,如果是,先从WKT创建一个边界框,使用该边界框进行GBIF搜索,然后将结果数据修剪为仅在原始WKT字符串中出现的数据。但有一个注意事项。因为先从WKT创建了一个边界框,并且limit参数确定了要获取的记录子集,所以当我们将结果数据修剪到WKT时,您获得的记录数量可能少于您使用limit参数设置的记录数量。但是,您可以将限制设置得足够高,以便获得在该边界框中找到的所有记录,然后您将获得WKT中可用的所有记录。

然而,我在尝试【使用rgbif获取非行政单位区域内的物种记录信息】时发现:即使我使用的wkt字符串长度远大于1500,但是直接将它或者用【wkt_parse】方法分割了它的结果传递给【occ_search】方法的【geometry】参数时,结果数据根本没有差异,而结果长度的不同仅仅是因为wkt表达的polygon数量不同造成的独立请求数量不同,有关这方面的信息请参考R语言【rgbif】——什么是多值传参?如何在rgbif中一次性传递多个值?多值传参时的要求有哪些?

简单来说,实际操作中,我发现小心翼翼地处理长WKT字符串完全是多此一举!

那么,真的还有必要使用【wkt_parse】来分割长WKT吗

下面我将用事实来回答这个问题。

首先,我使用的WKT字符串是在【R语言【rgbif】——使用rgbif获取非行政单位区域内的物种记录信息(以泛喜马拉雅地区为例)】中的 变量【wkt】变量【wkt_for_rgbif】

变量【wkt】 它的长度nchar(wkt)为8909。符合rgbif对长WKT字符串的定义标准。

变量【wkt_for_rgbif】 是 rgbif 中 wkt_parse 方法将 变量【wkt】变为许多个长度小于1500的非长WKT字符串片段。

for (i in wkt_for_rgbif){print(nchar(i))}

在这里插入图片描述

1. 查找的数据量的对比

我先按照用户手册推荐的,使用非长WKT字符串的 变量【wkt_for_rgbif】

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 0 以只获得数据量,hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    a <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    因为参数【geometry】接受了多值输入,向量型的多值输入发起了多次独立请求,所以结果是一个长度为 wkt_for_rgbif 的列表。
    在这里插入图片描述
    在这里插入图片描述

  2. 前文提到了 wkt_for_rgbif 是向量型的多值输入,会发起多次独立请求,进而生成了结果列表。既然提到了多值输入,还有不会发起多次独立请求的字符串型的多值输入。那么将 wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】 时会发生什么呢?

    b <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    

    在这里插入图片描述
    不同类型的多值输入生成的结果数量相同吗?

    sum_a <- 0
    for (i in a){sum_a <- sum_a + i$meta$count}
    sum_a
    
    [1] 6819489
    
    b$meta$count == sum_a
    
    [1] TRUE
    

    意料之中,数量相同。

  3. 实践出真知,直接用 长WKT字符串 变量【wkt】 又如何呢?

    c <- occ_search(limit = 0, hasCoordinate = TRUE, geometry = wkt)
    

    在这里插入图片描述
    6819489,没有问题!

2. 查找的实际数据的比对

在上面对数据量比对中,我通过参数【limit】设置为0,只获取数据量。

但回头一想, occ_search 单次请求的返回数据量最多为 100000,正是通过参数【limit】实现控制的。前文得知查找到的数据量为 6819489,远超过了单次请求返回数量的上限,假设不考虑拿到所有的 6819489 条数据,只按照参数【limit】默认的 500 条数据来操作,那么使用不同长度的WKT字符串拿到的结果会一样吗?

  1. 变量【wkt_for_rgbif】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    d <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt_for_rgbif)
    

    在这里插入图片描述
    对于返回的结果,我要查看它的数量:

    sum_d <- c()
    for (i in d){sum_d <- append(sum_d, nrow(i$data))}
    sum_d <- sum(sum_d)
    
    [1] 768
    

    以及数据内容:

    sum_d_data <- d$geom1$data
    for (i in d){sum_d_data <- full_join(sum_d_data, i$data)}
    

    在这里插入图片描述
    说明 参数【limit】 限制每次独立请求的返回数量上限为 50。

  2. wkt_for_rgbif 转换为字符串型再传递给 参数【geometry】limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    e <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = paste(wkt_for_rgbif, collapse = ";"))
    e$data
    

    只会返回 50 条数据。

    在这里插入图片描述

  3. 将长WKT字符串 变量【wkt】 传入 occ_searchgeometry 参数,limit 参数设置为 50hasCoordinate 参数设置为 TRUE以只统计有坐标信息的记录。

    f <- occ_search(limit = 50, hasCoordinate = TRUE, geometry = wkt)
    f$data
    

    这种方式的结果和上一步的结果完全相同。在这里插入图片描述

总结

一般来说,长WKT字符串的处理 是不需要的!因为,利用rgbif从gbif上获取数据时,参数【limit】 更多地用来配合 参数【start】 来获得完整的筛选结果。这么看来,使用 方法【wkt_parse】 分割WKT,然而会让操作更加复杂,增加使用门槛。

这篇关于R语言【rgbif】——occ_search对待字符长度大于1500的WKT的特殊处理真的有必要吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510996

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块