Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

2023-12-19 04:20

本文主要是介绍Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博客已同步微信公众号:GIS茄子;若博客出现纰漏或有更多问题交流欢迎关注GIS茄子,或者邮箱联系(推荐-见主页).
微信公众号
Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?

01 前言

最近在了解sentinel-1的预处理过程,但是由于影响太大了,常规的GeoTIFF无法输出预处理结果,BigTIFF输出时似乎也遇到了一些问题(好在后面解决了,所以正好做一下HDF5文件输出的TIFF文件与BigTIFF文件的对比),对于输出的HDF5文件则完全没有问题。但是问题在于HDF5文件的结构尚不了解,因此对于其中的地理信息如何提取很关键(当然你可以使用ArcGIS或者ENVI打开其中的VV和VH波段,但是都无法自动读取到其中的地理信息或者坐标系信息)。

02 解析HDF5文件

由于我处理的Sentinel-1时IW的VV和VH,因此输出的HDF5文件存在两个波段:

VV和VH相关波段信息

下方是关于这个地理信息的参数(ps:找了我好久,里面的属性信息真的太多了,而且官方文档似乎对于这个HDF5文件的结构并没有说明,真的象拔蚌了🌿):

元数据

那么我们来解释一下其中关键的8个参数:
first_near_lat = 30.710711909958782; // double
first_near_long = 106.20485428671394; // double
first_far_lat = 30.710711909958782; // double
first_far_long = 109.12878070499457; // double
last_near_lat = 28.79451557740343; // double
last_near_long = 106.20485428671394; // double
last_far_lat = 28.79451557740343; // double
last_far_long = 109.12878070499457; // double

未必准确,但是目前从得到的结果与BigTIFF对比是几乎完全一致的地理位置(如果有更详细的文档或者准确信息,请微信公众号或者邮箱联系我,这对我帮助很大)。

first 表示第一行,last表示最后一行,near表示扫描线的起点,far表示扫描线的终点。

其实这里搞不懂为什么要有四个点位的信息?一般的角点信息只需要左上和右下两个点位就足够了,算了我不是这个方向的多说无益。

那么,其实说到这里其实已经搞定了,WGS84坐标系有了,仿射参数也已经有了,VV和VH波段数据也有了。

03 代码

# @Author   : ChaoQiezi
# @Time     : 2023/12/18  8:40
# @Email    : chaoqiezi.one@qq.com"""
This script is used to 读取HDF5、BigTIFF文件
"""import os.path
import h5py
from osgeo import gdal, osr# 准备
h5_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\HDF5\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.h5'
tiff_path = r'H:\Datasets\Objects\TobacooLeafRecognition\Data\BigTIFF\S1A_IW_GRDH_1SDV_20220602T103546_20220602T103611_043483_05311F_8F62_NR_Orb_Cal_Spk_TC_dB.tif'
out_dir = r'H:\Datasets\Objects\TobacooLeafRecognition\Data'
out_path = os.path.join(out_dir, 'vv_vh.tiff')
vh_name = 'bands/Sigma0_VH_db'
vv_name = 'bands/Sigma0_VV_db'
metadata_name = 'metadata/Abstracted_Metadata'
lon_min_name = 'first_near_long'
lon_max_name = 'last_far_long'
lat_min_name = 'last_far_lat'
lat_max_name = 'first_near_lat'
lon_res_name = 'lon_pixel_res'
lat_res_name = 'lat_pixel_res'# 探索HDF5文件
with h5py.File(h5_path) as h5:vh, vv = h5[vh_name][:], h5[vv_name][:]metadata = h5[metadata_name]lon_min = metadata.attrs[lon_min_name]lon_max = metadata.attrs[lon_max_name]lat_min = metadata.attrs[lat_min_name]lat_max = metadata.attrs[lat_max_name]lon_res = metadata.attrs[lon_res_name]lat_res = metadata.attrs[lat_res_name]
# 提取栅格信息
rows, cols = vv.shape
transform = [lon_min, lon_res, 0, lat_max, 0, -lon_res]
# 定义地理信息(WGS84)
srs = osr.SpatialReference()
srs.ImportFromEPSG(4326)  # WGS84
# 输出
driver = gdal.GetDriverByName('GTiff')
ds = driver.Create(out_path, cols, rows, 2, gdal.GDT_Float32)
ds.SetProjection(srs.ExportToWkt())  # 设置坐标系
ds.SetGeoTransform(transform)  # 设置仿射参数
[ds.GetRasterBand(_ix+1).WriteArray(_band) for _ix, _band in enumerate([vv, vh])]  # 写入数据
ds.FlushCache()
ds = None
# 探索BigTIFF文件
ds = gdal.Open(tiff_path)
bands = ds.ReadAsArray()
proj = ds.GetProjection()
tiff_transform = ds.GetGeoTransform()
print('HDF5的proj: {}'.format(srs.ExportToWkt()))
print('BigTIFF的proj: {}'.format(proj))
print('HDF5的仿射变换参数: {}'.format(transform))
print('BigTIFF的proj: {}'.format(tiff_transform))

输出:

HDF5的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]BigTIFF的proj: GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]HDF5的仿射变换参数: [106.20485428671394, 8.983152841195215e-05, 0, 30.710711909958782, 0, -8.983152841195215e-05]BigTIFF的proj: (106.20485428671394, 8.983152841195215e-05, 0.0, 30.710711909958782, 0.0, -8.983152841195215e-05)

基本上一致

HDF5输出与BigTIFF对比

这篇关于Python:(Sentinel-1)如何解析SNAP输出的HDF5文件并输出为GeoTIFF?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510879

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用