【密码学基础】Diffie-Hellman密钥交换协议

2023-12-19 00:30

本文主要是介绍【密码学基础】Diffie-Hellman密钥交换协议,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DH介绍

Diffie-Hellman密钥协议算法是一种确保共享密钥安全穿越不安全网络的方法。
这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥,然后可以用这个密钥进行加密和解密。
但是注意,这个密钥交换协议 只能用于密钥的交换,而不能进行消息的加密和解密。 双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。
这种秘钥交换技术的目的在于使两个用户安全的协商一个会话密钥。

DH密钥交换流程

  • 步骤1:Alice和Bob共同确定公开的大素数 P P P和一个整数 G G G,其中 G G G P P P的原根
  • 步骤2:Alice选取一个秘密整数 a a a作为私钥,然后对 a a a进行幂模计算,得到公钥 A A A A = G a m o d P A=G^a~\mathrm{mod}~P A=Ga mod P,然后将 A A A发给Bob
  • 步骤3:和Alice一样,Bob选取一个秘密整数 b b b作为私钥,然后对 b b b进行幂模计算,得到公钥 B B B B = G b m o d P B=G^b~\mathrm{mod}~P B=Gb mod P,然后将 B B B发给Alice【 A , B A, B A,B就是所谓的Diffie-Hellman公开值】
  • Alice计算密钥 K 1 = B a m o d P K_1=B^a~\mathrm{mod}~P K1=Ba mod P
  • 和Alice一样,Bob计算密钥 K 2 = A b m o d P K_2=A^b~\mathrm{mod}~P K2=Ab mod P
  • K 1 = B a m o d P = ( G b ) a m o d P = G a b m o d P , K 2 = A b m o d P = ( G a ) b m o d P = G a b m o d P K_1=B^a~\mathrm{mod}~P=(G^b)^a~\mathrm{mod}~P=G^{ab}~\mathrm{mod}~P, K_2=A^b~\mathrm{mod}~P=(G^a)^b~\mathrm{mod}~P=G^{ab}~\mathrm{mod}~P K1=Ba mod P=(Gb)a mod P=Gab mod P,K2=Ab mod P=(Ga)b mod P=Gab mod P,因此, K 1 = K 2 K_1=K_2 K1=K2 K 1 , K 2 K_1, K_2 K1,K2就是所谓的共享密钥】

在这里插入图片描述

安全性分析

对于幂模运算 c = b e m o d m c=b^e~\mathrm{mod}~m c=be mod m,只要给定 b , e , m b, e, m b,e,m,求模幂的过程是非常高效的。另一方面,当 m m m是大素数时,给定 b , c , m b, c, m b,c,m,求指数 e e e的过程是很难的【称为离散对数的难题】。这种单向函数的特性使模幂运算被多次用于密码算法中。

DH通信过程可见,只有 G , P , A , B G, P, A, B G,P,A,B会在传输,而 a , b a, b a,b是不会传输的。同时,因为离散对数的难解,当 G , P G, P G,P选的足够大时,通过 A , B A, B A,B分别推算 a , b a, b a,b是极其困难的。进而,破解出最终的对称密钥K也是极其困难的。

这篇关于【密码学基础】Diffie-Hellman密钥交换协议的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/510318

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.