基于红外热成像的行人检测方法

2023-12-18 04:48

本文主要是介绍基于红外热成像的行人检测方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://blog.csdn.net/watermelon1123/article/details/79898148

基于红外热成像的行人检测方法

叫我西瓜超人 2018-04-11 16:18:27 12706 收藏 58

分类专栏: 计算机视觉

版权

       本文主要讲解在热红外成像下的行人检测方法,方法来自于《Thermal-Infrared Pedestrian ROI Extraction through Thermal andMotion Information Fusion》,感兴趣的可以看下论文原文,若文中有理解错误的地方望指出。

⒈ 热红外成像的特点:

⑴ 不受光照条件应影响

⑵ 图像中的人会比背景显得更亮

整体流程

       先通过热成像阈值分析和运动分析分别比对出可能的人体ROI区域Rt和Rm,然后通过ROI fusion得到混合的ROI区域Rf,再通过一定的策略对人体区域的高和宽分别进行调整,最终通过宽/高比值及面积判定确定最终的Pedestrian ROI。

2. 具体实施方式

2.1 Thermal Analysis

       通过阈值对图像进行二值分割,其中阈值

之后对二值化图像分别进行开操作和闭操作后进行连通域运算,计算后我们仅保留连通域面积大于Amin的连通域作为通过亮度分割结果的候选连通域,记为Rt。其中Amin=0.0025*r*c,r和c 为连通域的宽高。

2.2   Motion Analysis

       热红外成像对于温度比较敏感,当环境温度较高或环境中高温物体干扰多的情况下,仅通过Thermal Analysis将无法检测到全部的行人,因此通过MotionAnalysis加入运动信息的判定,可以检测到场景中运动的行人,增加检测的召回率。

    通过论文《A shape-independent method for pedestrian detection withfar-infrared images》(可以参考博文https://blog.csdn.net/guanyuqiu/article/details/51276576),可以检测得到许多可能的行人ROI区域。在Motion Analysis中我们加入一些额外的限制,设定变化阈值为16(经验值),比对前后两帧的同一位置像素点的差值,若满足条件:

则该像素点为“warm”pixel,我们限制仅当“warm”pixels的个数大于ROI区域pixel个数的5%,并且面积大于最低阈值,我们将这样的ROI记作Rm。

2.3   ROI Fusion

       将得到的Rt和Rm融合为一个ROI区域Rf,分为以下三种情况:

⑴ 对于Rt中的与Rm的没有任何的交集ROI,加入到Rf中;

⑵ 对于Rm中的与Rt的没有任何的交集ROI,加入到Rf中;

⑶ Rm和Rt中有交集的ROI,将和的所有像素点构成一个新的ROI,加入到Rf中,

2.4   Blob Analysis

2.4.1 ROI WidthAdjustment

       因为之前所得的ROI区域可能包含不止一个行人目标,通过Width Adjustment可以将多个行人分开。具体做法是以列为方向统计每列的像素值的和并构成灰度直方图,直方图计算方法:

通过直方图的峰值和低值能够把区域中的多个行人分开。这样我们将分开后的新的ROI记作sRf。

2.4.2 ROI HeightAdjustment

       根据行像素均值对ROI区域高度进行截取。

2.5   Pedestrian Confirmation

       最后一个步骤,通过一些限制滤除一些可能不是行人的ROI区域。限制大概分为两点:

⑴ 如果width>height,需要计算ROI的灰度值标准差,因为通常width>height可能是被误检的灯泡等高温度物体,这种物体通常热量分布比较均匀(人体通常头部亮度较高,其他区域比头部低),因此若标准差小于12,则认为该ROI不是行人,被滤除;

⑵ 面积area>Amin。

⒊ 测试结果

论文中给出了12中不同环境下的测试场景,包括天气的不同和环境温度的不同,为了测试不同环境对方法准确率和召回率的影响。

总体结论是:天气对于热红外成像检测人体目标的影响不大,但是受温度的影响非常大,可以看到随着温度的升高,召回率下降的非常多,甚至在晴天33度的情况下召回率只有0.03;但是在2~20度的区间内,算法都有较好的召回率和准确率。

 

这篇关于基于红外热成像的行人检测方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507089

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

C# GC回收的方法实现

《C#GC回收的方法实现》本文主要介绍了C#GC回收的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、什么是 GC? 二、GC 管理的是哪部分内存? 三、GC 什么时候触发?️ 四、GC 如何判断一个对象是“垃圾