【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic

2023-12-17 13:04

本文主要是介绍【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考 
Reinforcement Learning, Second Edition  
An Introduction 
By Richard S. Sutton and Andrew G. Barto

非策略梯度方法的问题

之前的算法,无论是 MC,TD,SARSA,Q-learning, 还是 DQN、Double DQN、Dueling DQN,有至少两个问题:

  1. 都是处理离散状态、离散动作空间的问题,当需要处理连续状态 / 连续动作的时候,如果要使用这些算法,就只能把状态 / 动作离散化处理,这会导致实际相邻的 Q ( s , a ) Q(s,a) Q(s,a) 的值没有联系,变化不光滑,并且随着离散空间变大,max 的比较操作需要的计算量增大,这导致不能把离散化的分辨率无限地增高。
  2. 都利用对 V π V_\pi Vπ Q π Q_\pi Qπ arg max ⁡ a \argmax_a argmaxa 来得到策略 π \pi π,会导致只会选最优的动作,尽管有次优的动作,算法也不会去选,只会选最好的,在某些需要随机性的场景(如:非完全信息博弈(军事、牌类游戏))会产生大问题,因为行为比较有可预测性,很容易被针对。(即使有 ϵ \epsilon ϵ-贪心)

在非完全信息的纸牌游戏中,最优的策略一般是以特定的概率选择两种不同玩法,例如德州扑克中的虚张声势

我们想要的是右边的策略,它能够给出一个所有动作概率都介于(0,1)的分布,并从中进行随机采样一个动作,而不是只有一个动作的值是最突出的

策略梯度

策略梯度可以同时解决以上两个问题。
我们将策略参数化为 π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ)(可以是简单的线性模型+softmax,也可以是神经网络),这个策略可以被关于 θ \theta θ求导: ∇ θ π ( a ∣ s , θ ) \nabla_\theta \pi(a|s,\theta) θπ(as,θ),简写为 ∇ π ( a ∣ s ) \nabla \pi(a|s) π(as)

策略梯度的直觉

我们实际上想找到一个更新策略 π ( a ∣ s , θ ) \pi(a|s,\theta) π(as,θ) 的方法,它在 θ \theta θ参数空间里面:

  • 如果往一个方向走,能对给定的 ( s t , a t ) (s_t,a_t) (st,at)获得正的回报 G t G_t Gt,就往这个方向走,并且回报绝对值越大走的步子越大
  • 如果往一个方向走,能对给定的 ( s t , a t ) (s_t,a_t) (st,at)获得负的回报 G t G_t Gt,就不往这个方向走,并且回报绝对值越大走的步子越大

和梯度下降类似,可以得到:
θ t + 1 ← θ t + α G t ∇ π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \nabla \pi(a_t|s_t) θt+1θt+αGtπ(atst)

除以 π \pi π 变成 Ln

单纯这样更新会有问题,因为如果 π \pi π被初始化为存在一个次优动作(具有正回报),并且概率很大,而最优动作的概率很小,那么这个次优动作就很可能被不断地强化,导致无法学习到最优动作。

如果有三个动作,奖励是10,5,-7,对应的概率和箭头长度相同,那么5这个动作会被不断强化,因为它的初始采样概率很大
因此我们要除一个动作的概率,得到修正后的版本:

θ t + 1 ← θ t + α G t ∇ π ( a t ∣ s t ) π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \frac{\nabla \pi(a_t|s_t)}{\pi(a_t|s_t)} θt+1θt+αGtπ(atst)π(atst)

也就是
θ t + 1 ← θ t + α G t ∇ ln ⁡ π ( a t ∣ s t ) \theta_{t+1} \leftarrow \theta_t + \alpha G_t \nabla \ln{\pi(a_t|s_t)} θt+1θt+αGtlnπ(atst)

REINFORCE

如果这个 G t G_t Gt 是由 MC 采样整个序列得到的,那么就得到了 REINFORCE 算法:
在这里插入图片描述

带基线的 REINFORCE

在这里插入图片描述
唯一的区别:TD target 从 G t G_t Gt 变成 G t − v ^ ( S t , w ) G_t - \hat v(S_t,\mathbf{w}) Gtv^(St,w),并且多一个价值网络,也进行跟更新。
好处:

  1. 减小方差
  2. 加快收敛速度

基线的直觉:
把 TD target 从全为正变成有正有负,更新的时候更有区分度。

Actor-Critic

在这里插入图片描述
再把 TD target 变化一下,从多步(MC)变成单步(TD),其他和 REINFORCE 一样。
之所以叫做 Actor-Critic 就是把基线 v ^ ( S , w ) \hat v(S,\mathbf{w}) v^(S,w) 当作评论家,它评价状态的好坏;而 π ( A ∣ S ) \pi(A|S) π(AS) 当作演员,尝试去按照评论家的喜好(体现为 TD target 用评论家来进行估计)来做动作。

总结

REINFORCE:MC,更新慢
δ = G t \delta =\red{ G_t} δ=Gt
θ t + 1 ← θ t + α δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αδlnπ(AtSt)
基线 REINFORCE:MC,更新慢,但是有基线,方差较小,收敛快,调参难度大一些
δ = G t − v ^ ( S t , w ) \delta = \red{G_t-\hat v(S_{t},\mathbf{w})} δ=Gtv^(St,w)
w t + 1 ← w t + α w δ ∇ v ^ ( S t ) \blue{\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_{\mathbf{w}} \delta \nabla {\hat v(S_t)}} wt+1wt+αwδv^(St)
θ t + 1 ← θ t + α θ δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha_{\theta} \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αθδlnπ(AtSt)
Actor-Critic:TD,更新快,调参难度大一些
δ = R t + γ v ^ ( S t ′ , w ) − v ^ ( S t , w ) \delta = \red{R_t+\gamma \hat v(S'_{t},\mathbf{w})-\hat v(S_{t},\mathbf{w})} δ=Rt+γv^(St,w)v^(St,w)
w t + 1 ← w t + α w δ ∇ v ^ ( S t ) \blue{\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha_{\mathbf{w}} \delta \nabla {\hat v(S_t)}} wt+1wt+αwδv^(St)
θ t + 1 ← θ t + α θ δ ∇ ln ⁡ π ( A t ∣ S t ) \theta_{t+1} \leftarrow \theta_t + \alpha_{\theta} \delta \nabla \ln{\pi(A_t|S_t)} θt+1θt+αθδlnπ(AtSt)

这篇关于【深度强化学习】策略梯度方法:REINFORCE、Actor-Critic的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/504457

相关文章

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD