Swin-Transformer 在图像识别中的应用

2023-12-17 09:45

本文主要是介绍Swin-Transformer 在图像识别中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 卷积神经网络简单介绍

图像识别任务主要利用神经网络对图像进行特征提取,最后通过全连接层将特征和分类个数进行映射。传统的网络是利用线性网络对图像进行分类,然而图像信息是二维的,一般来说,图像像素点和周围邻域像素点相关。而线性分类网络将图像强行展平成一维,不仅仅忽略了图像的空间信息,而全连接层会大大增加网络的参数

为了更好把握图像像素的空间信息,提出了 CNN 卷积神经网络,利用卷积核(滤波器)对图像进行窗口化类似处理,这样可以更好的把握图像的空间信息。

CNN 卷积神经网络一般处理流程,将图像的宽高缩减,增加图像的channel 信息。这是因为我们往往更在乎图像的语义信息,所以正常神经网络都是将图像 size 缩半,channel 翻倍,一个通道提取一个语义,尺寸缩半是因为最大池化层之类的操作,可以增加网络的抗干扰能力。例如经典的VGG 网络就是每一层特征图size减半,channel 翻倍

2. Transformer 介绍

Transformer 是在自然语言处理(NLP)任务中提出的,之前的时序网络(RNN)不能并行化,计算N+1的数据,需要计算N的数据。因此,Transformer应运而生了。

图像处理中,如果将图像划分为一个个patch,这样Transformer就能向处理自然语言那样处理图像

Transformer 与 CNN 相比:

  • CNN 网络有个关键的问题就是卷积核size 的设定,大的kernel size 可以拥有更好的感受野,把握更多图像的全局信息。但是size过大,网络的参数就会增加。后来VGG网络的提出,连续3*3卷积可以代替更大的卷积核,所以后面的网络均采用3*3卷积核。

        参考资料:pytorch 搭建 VGG 网络

  • Transformer 是基于全局处理的,可以把握图像的全局信息,因此理论上Transformer 有比CNN更好的特征提取能力

Trasnformer 的 self-attention 和 multi-head self-attention

self-attention 部分:

这里计算Q和K的相似度,得到的值类似于权重,然后和V相乘

Q和K的相似度,点乘出的 α

这里是Q和每一个K匹配,计算公式如下 ,例如q1和k1 = 1*1+2*1 / 根号 2 = 3/1.414= 2.12 。q1和k2的相似度,1*0+2*1 /根号2 = 2/1.414 = 1.41

q2和k1、k2的计算一样,这里利用矩阵计算,所以Transformer可以并行化计算

计算权重和V的值

multi-head self-attention:(MSA)

将数据均分成不同head

2.1 Vision Transformer

将图像划分为不同的patch,输入Transformer 网络

Transformer Encoder结构:

不同patch的相似度

Vision Transformer分类项目:Vision Transformer 网络对花数据集的分类

2.2 Swin Transformer

swin Transformer 和 vision Transformer 区别:

  • swin Transformer 有层次结构,4、8、16倍下采样
  • swin Transformer 窗口分割

Swin Transformer 网络框架:

关于patch merging部分:就是将图像size减半,通道翻倍

W-MSA模块:

shifted window:

3. Swin-Transformer 使用

代码下载:Swin-Transformer 迁移学习对数据集花的分类

如果需要更换数据集的话,将data删除,然后将自己的数据集按照data下面摆放即可

训练过程的超参数可以不做更改,分类的个数由代码生成,不需要自行更改!

parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--lrf', type=float, default=0.1)
parser.add_argument('--freeze-layers', type=bool, default=True)     # 是否冻结权重

训练结果:测试集的精度接近 98%,效果很棒了

 测试集的混淆矩阵:

测试结果为:

这篇关于Swin-Transformer 在图像识别中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503929

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD