谷歌Gemini API 应用(二):LangChain 加持

2023-12-17 02:36

本文主要是介绍谷歌Gemini API 应用(二):LangChain 加持,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

昨天我完成了谷歌Gemini API 应用(一):基础应用这篇博客,今天我们要在此基础上实现Gemini模型的Langchian加持,因为Gemini API刚发布没几天,所以langchian还没有来得及将其整合到现有的langchain包的架构内,langchain公司目前发布了需要独立安装的支持Gemini API的langchain包:“langchain-google-genai”, 相信过不了多久它就会被整合到现有的langchain包的架构内。

一,配置环境

我们需要安装以下python包:

pip -q install google-generativeai==0.3.1
pip -q install langchain-google-genai
pip -q install langchain_experimental langchain_core
pip -q install "langchain[docarray]"

二、配置API_KEY

当我们在Google AI Studio页面上创建了api key以后,我们就可以在本地通过该api_key来访问谷歌的Gemini Pro等模型,下面我们来导入本次实验需要使用的python包,并配置谷歌的api_key:

import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
import osos.environ["GOOGLE_API_KEY"] = 'your_google_api_key'#填入自己的api_key

三、模型查看

下面我们查看一下本次实验需要使用的三个谷歌Gemini模型的具体信息:

genai.configure(api_key=os.environ["GOOGLE_API_KEY"])models = [m for m in genai.list_models() if m.name in (['models/gemini-pro','models/gemini-pro-vision','models/embedding-001'])]
models

在本次实验中我们会用到谷歌的三个模型分别是 语言模型gemini-pro,多模态模型gemini-pro-vision,嵌入模型embedding-001,上面我们列出来了这3个模型的具体信息包括具体的参数如输入,输出的token大小的限制等。下面我们先原生的Gemini的api来实现最基本的内容生成功能:

prompt = '你是谁,你能做什么?'model = genai.GenerativeModel('gemini-pro')response = model.generate_content(prompt)Markdown(response.text)

四、Gemini with LangChain

接下来我们通过LangChain来实现上述的内容生成功能:

from langchain_google_genai import ChatGoogleGenerativeAI,GoogleGenerativeAIEmbeddings
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParserllm = ChatGoogleGenerativeAI(model="gemini-pro")
result = llm.invoke("LLM 是什么?")
Markdown(result.content)

这里我们看到通过langchian也很轻松的实现了gemini的内容生成的功能,不过这里需要说明的是我们在创建langchain的llm的时候我们并没有填写apk_key, 这是因为这里的gemini的llm它默认会去读取os的api_key的环境变量,因为在前面的代码中我们已经配置好了os的api_key,所以这里在创建llm时就无需填写api_key的参数了。

五、langchain的stream和batch

流式(stream)输出和批处理(batch)是langchain的两大优秀功能,流式输出可以给用户带来更好的用户体验,而批处理则可以提高用户的工作效率,因为它可以让llm同时处理多个问题,下来我们就来测试一下langchain的stream和batch能力:

for chunk in llm.stream("写一首关于躺平的打油诗。"):print(chunk.content)print("---------------------")

 因为流式输出每次只输出部分结果,所以响应时间比较短,这会给用户带来比较好的用户体验,下面我们看一下批处理:

results = llm.batch(["2+2等于几?","3+5等于几?",]
)
for res in results:print(res.content)

这里我们同时向llm询问了两个简单的数学问题,llm能够同时给出这些问题的正确答案,这说明llm具备同时处理多个问题的能力。

六、Chain的使用

在我之前的多篇博客中都详细介绍了在langchian中使用chain的方法,这里我们也要尝试一下在gemini模型环境下如何来使用chian。

model = ChatGoogleGenerativeAI(model="gemini-pro",temperature=0.7)prompt = ChatPromptTemplate.from_template("给我讲一个关于{topic}的笑话"
)output_parser = StrOutputParser()chain = prompt | model | output_parserresponse = chain.invoke({"topic": "躺平"})
print(response)

这里我们使用了langchain的LCEL语法创建了一个chian, 这和我们之前介绍langchian的博客中的方法是一样的,同样我们也能得到想要的结果,不过这里我们需要说明的是,这里我们在创建model的时候设置了参数temperature=0.7, temperature这个参数的取值范围为0-1,它表示生成结果的随机性,temperature越高,产生结果的随机性越大,因此当我们需要让llm讲故事或者讲笑话的时候,我们可以适当调高temperature的值,这样每次都会产生不一样的结果的概率就会比较大,而当我们需要llm做一些严谨的数学或者逻辑的推理/计算时,我们可以调低temperature的值,甚至可以将temperature设置为0,因为这时候我们需要llm给出严谨的唯一的答案。

七、简单的RAG

在我之前的使用langchain与你自己的数据对话系列的博客中详细介绍了RAG即检索增强生成(Retrieval Augmented Generation),现在我们也需要测试一下gemini模型的RAG能力,下面我们创建一个简单的向量数据库,并存储四条文本,然后我们向llm询问有关文本的内容:

embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")vectorstore = DocArrayInMemorySearch.from_texts(["Gemini Pro 是 GoogleDeepMind 开发的大型语言模型。","Gemini 可以是一个星座,也可以是一系列语言模型的名称。","人是由恐龙进化而来的。","熊猫喜欢吃天鹅肉。"],embedding=embeddings # passing in the embedder model
)retriever = vectorstore.as_retriever()

这里我们创建了一个内存向量数据库,并向其中存储了4条文本,然后使用了gemini的嵌入模型“embedding-001”作为文本嵌入工具,最后我们通过向量数据库创建了一个检索器retriver, 接下来我们可以通过检索器retriver来检索向量数据库中的相关文档:

retriever.get_relevant_documents("Gemini 是什么?")

 这里我们看到检索器retriver返回了相关的文档,并按文档的内容与问题的相关度对文档进行了排序。

retriever.get_relevant_documents("人从哪里来的?")

接下来我们来创建chian, 不过在创建chian之前我们需要创建prompt模板和RunnableMap,最后将它们组合成一个chain:

from langchain.schema.runnable import RunnableMap#创建prompt模板
template = """Answer the question a a full sentence, based only on the following context:
{context}
Question: {question}
"""#由模板生成prompt
prompt = ChatPromptTemplate.from_template(template)#创建chain
chain = RunnableMap({"context": lambda x: retriever.get_relevant_documents(x["question"]),"question": lambda x: x["question"]
}) | prompt | model | output_parser

当我们创建完chain以后就可以使用invoke方法来调用chain了:

#调用chain
chain.invoke({"question": "谁开发了 Gemini Pro?"})

 

chain.invoke({"question": "Gemini是什么?"})

 

chain.invoke({"question": "人是从哪里来的?"})

 

chain.invoke({"question": "熊猫喜欢吃什么?"})

八、PAL Chain

PALChain是Langchain中用于生成代码的程序辅助语言模型 (PAL) 解决方案。 PAL 是论文“Program-Aided Language Models”中描述的一种技术 (https://arxiv.org/pdf/2211.10435.pdf)下面我们使用langchian的PALChain来实现两个简单的数学逻辑推理题:

from langchain_experimental.pal_chain import PALChainmodel = ChatGoogleGenerativeAI(model="gemini-pro",temperature=0)pal_chain = PALChain.from_math_prompt(model, verbose=True)

 这里我们创建了一个model和pal_chain ,并设置了temperature=0, 这是因为我们接下来需要做严谨的逻辑推理,不需要llm产生随机性的结果,因此我们设置了temperature=0。

question ="食堂有23个苹果。如果午餐用了20个,之后又买了6个,那么食堂最后还剩多少个苹果?"
pal_chain.invoke(question)

 这里我们看到pal_chain在内部定义了一个solution的pyhon函数,并在该函数中做了逻辑推理,最后得到了正确的计算结果。

question ="""
如果小明早上 7:00 起床,并且他在家花了 1 小时吃早餐,
然后又花了 30 分钟步行去学校,小明几点到的学校?
"""
pal_chain.invoke(question)

 这里我们看到llm对时间的概念还存在一点问题,它并没有将最后的结果8.5转换成时间格式,而是直接以十进制的格式给出了最后的答案。

九、多模态支持

在langchain中使用多模态模型时我们需要用到langchian的HumanMessage类,它规定了一套与多模态模型对话的格式,下面我们将会将一个图片的url地址,然后询问gemini的多模态模型关于图片内容的问题:

import requests
from IPython.display import Imageimage_url = "https://upload.wikimedia.org/wikipedia/commons/e/e7/Everest_North_Face_toward_Base_Camp_Tibet_Luca_Galuzzi_2006.jpg"
content = requests.get(image_url).content
Image(content,width=300)

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAIllm = ChatGoogleGenerativeAI(model="gemini-pro-vision")# example
message = HumanMessage(content=[{"type": "text","text": "这个图片里有什么,它位于什么地方?",},  # You can optionally provide text parts{"type": "image_url","image_url": image_url},]
)llm.invoke([message])

 这里我们给gemini-pro-visio模型一张珠穆朗玛峰的图片url,然后询问图片里有什么,它位于什么地方,我们看到llm能准确识别图片中的内容,并且给出了珠穆朗玛峰的地理位置,效果还是不错的。

总结

今天我们学习了在langchain中使用gemin模型的的一些方法,总的来说使用方法和其他的模型如openai的模型的方法都是类似的。今天我们还尝试了langchain的stream和beath方法在gemini模型上的应用,还介绍了RAG、PAL Chain的应用,最后我们用一个简单例子介绍了langchain中使用gemini多模态模型的方法。希望今天的内容对大家学习gemini大模型有所帮助

参考资料

Google AI chat models | 🦜️🔗 Langchain

https://ai.google.dev/docs?hl=zh-cn

这篇关于谷歌Gemini API 应用(二):LangChain 加持的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/502796

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底