AutoGen多代理对话项目示例和工作流程分析

2023-12-16 22:45

本文主要是介绍AutoGen多代理对话项目示例和工作流程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这篇文章中,我将介绍AutoGen的多个代理的运行。这些代理将能够相互对话,协作评估股票价格,并使用AmCharts生成图表。

我们创建对话的目的是要求代理分析特定公司的股票价格,并制作股票价格图表。

为了实现这一目标,我们创建一下代理并协同工作:

金融分析师:分析师的任务是获取股票价格数据,进行分析,然后将数据传递给UI设计人员以创建图表。它还负责执行UI设计器的代码来生成和显示图表,并且可以在必要时请求丢失的数据。

软件工程师:软件工程师的主要角色是检索由财务分析师指定的所需天数的股票价格信息的函数。

UI设计师:UI设计师的主要职责是使用Amcharts股票图表库创建股票图表。这包括生成完整的代码,无缝地集成金融分析师提供的股票价格数据,并准备立即执行的代码。

AutoGen

AutoGen是一个框架,它通过使用可以彼此对话的多个代理来共同处理各种任务,从而促进大型语言模型(LLM)应用程序的创建。

AssistantAgent是专门设计用来作为人工智能助手来解决LLM任务的。

UserProxyAgent在每个交互回合中主要寻求人工输入作为其默认响应时进行调用。它还具有执行代码和调用函数的能力。如果不提供人工用户输入,该代理将在识别传入消息中的可执行代码块并自动启动代码执行。可以通过将code_execution_config参数配置为False来禁用代码执行。可以理解为它是代理的代理,可以执行代码并向其他代理提供反馈。

代码样板

首先,我们需要安装AutoGen库。

 !pip install pyautogen~=0.1.0

创建配置文件OAI_CONFIG_LIST。

 [{"model": "gpt-4-32k","api_key": "","api_base": "","api_type": "azure","api_version": "2023-07-01-preview"}]

加载配置文件

 config_list = autogen.config_list_from_json("OAI_CONFIG_LIST",filter_dict={"model": ["gpt-4", "gpt-4-0314", "gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"],},)

创建is_termination_msg函数来检查是否有终止消息来结束对话。

 def is_termination_msg(data):has_content = "content" in data and data["content"] is not Nonereturn has_content and "TERMINATE" in data["content"]

创建函数fetch_prices_for_symbol和fetch_prices检索指定时间范围内的历史价格数据,输入参数symbol和days。

 def fetch_prices_for_symbol(symbol: str, days: int) -> pd.DataFrame:# Define the date range for historical dataend_date = pd.Timestamp.now()start_date = end_date - pd.DateOffset(days=days)# Fetch historical data using yfinancedata = yf.download(symbol, start=start_date, end=end_date)# Reset the index and select relevant columnsdata.reset_index(inplace=True)data = data[["Date", "Open", "High", "Low", "Close", "Volume"]]data.rename(columns={"Date": "date", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Volume": "volume"}, inplace=True)return datadef fetch_prices(days: int, symbol: str) -> str:symbol_df = fetch_prices_for_symbol(symbol, days)symbol_txt = symbol_df.to_string(index=None)    return f"""{symbol_txt}""".strip()

通过llm_config定义LLM推理配置。这里还指定了函数fetch_prices和所需的输入参数days和symbol。

 llm_config = {"config_list": config_list,"use_cache": False,"temperature": 0,"request_timeout": 120,"functions": [{"name": "fetch_prices","description": "Fetch daily stock prices","parameters": {"type": "object","properties": {"days": {"type": "integer","description": "days"},"symbol": {"type": "string","description": "symbol"}},"required": ["days", "symbol"]}}]}

代理配置

各个代理角色的配置主要通过Prompt来进行指定:

1、金融分析师

 analyst_system_message = f"""Financial Analyst: As a Senior Financial Analyst responsible for a stock price indicator.Follow the plan:1. Obtain stock price data from the engineer.2. Analyze the stock price data, provide comment, and pass it to the UI designer for chart creation.3. Upon receiving the code from the UI designer along with the complete dataset, if it's not provided, kindly request the UI designer to provide the missing data.4. Execute the code received from the UI designer on your local machine to generate and display the chart.Upon successful completion of the plan, add "TERMINATE" to conclude the message."""analyst = AssistantAgent(name = "analyst",system_message = analyst_system_message,llm_config=llm_config,is_termination_msg=is_termination_msg,code_execution_config=False)

2、软件工程师

 engineer_system_message = f"""Engineer. You are a Senior Software Engineer that executes the fetch_prices functions as requested by the Financial Analyst."""engineer = AssistantAgent(name="engineer",system_message=engineer_system_message,llm_config=llm_config,function_map={"fetch_prices": fetch_prices},code_execution_config=False)

3、UI设计师

 uidesigner_system_message = f"""UI Designer: You are a Senior UI/UX designer with a specialization in crafting charts using the Amcharts Stock Chart library (referenced at https://www.amcharts.com/demos/stock-chart/), your assignment is to develop a stock chart using the stock price data supplied by the Senior Financial Analyst.Your responsibility involves:1. Generating comprehensive code, including the actual COMPLETE data, for the Senior Analyst to successfully run the chart.2. Ensuring that the code is prepared for immediate execution, WITHOUT ANY PLACEHOLDERS TEXT or missing data.3. Guaranteeing the seamless integration of the received stock price data into the code.4. Structuring the code for execution and utilizing the Amcharts library to present the stock chart."""uidesigner = AssistantAgent(name = "uidesigner",system_message=uidesigner_system_message,code_execution_config=False,  # set to True or image name like "python:3" to use dockerllm_config=llm_config)

4、UserProxyAgent,最后我们在定义一个人工的管理员,这样可以在需要进行人工干预时进行处理

 user_proxy = UserProxyAgent(name="admin",system_message="Human Admin: Let's engage with the analyst to have a discussion about the stock price report. Please ensure that the final report is shared with me for approval before it's finalized.",code_execution_config=False,  # set to True or image name like "python:3" to use dockerhuman_input_mode="NEVER",is_termination_msg=is_termination_msg)

最后我们把这些角色加入到讨论群组中,并且指定讨论的轮数:

 groupchat = autogen.GroupChat(agents=[user_proxy, analyst, uidesigner, engineer], messages=[], max_round=20)manager=autogen.GroupChatManager(groupchat=groupchat, llm_config=llm_config)

最后就是调用

 message = f"""Analyze stock price for GRAB for the last 30 days and create a chart."""user_proxy.initiate_chat(manager, clear_history=True, message=message)

日志解析

我们来看看并分析他们的对话,这样可以了解到工作的具体细节

对话由人工发起,也就是我们最后调用代码的prompt

 admin (to chat_manager):Analyze stock price for GRAB for the last 30 days and create a chart.

聊天管理器向分析师发送了一条消息,要求检索过去30天的Grab股票数据,并向聊天管理器提供输入参数。随后,聊天管理器将此信息传达给工程师。

 analyst (to chat_manager):***** Suggested function Call: fetch_prices *****Arguments: {"days": 30,"symbol": "GRAB"}

在收到来自聊天管理器的指令后,工程师继续执行该函数,获取输出,然后通知聊天管理器。

 >>>>>>>> EXECUTING FUNCTION fetch_prices...[*********************100%%**********************]  1 of 1 completedengineer (to chat_manager):***** Response from calling function "fetch_prices" *****date  open  high   low  close    volume2023-09-20  3.50 3.545 3.410   3.46  136397002023-09-21  3.45 3.460 3.380   3.46  137814002023-09-22  3.48 3.510 3.425   3.43   87082002023-09-25  3.43 3.470 3.385   3.43  109900002023-09-26  3.38 3.450 3.360   3.40  114588002023-09-27  3.40 3.460 3.360   3.38  209211002023-09-28  3.38 3.490 3.360   3.47  144823002023-09-29  3.52 3.590 3.520   3.54  155802002023-10-02  3.49 3.570 3.460   3.48  198456002023-10-03  3.48 3.480 3.330   3.35  273703002023-10-04  3.32 3.410 3.230   3.40  182243002023-10-05  3.37 3.500 3.370   3.48  169040002023-10-06  3.45 3.520 3.445   3.50   93869002023-10-09  3.47 3.480 3.380   3.44  135126002023-10-10  3.51 3.570 3.500   3.53  114927002023-10-11  3.51 3.550 3.480   3.49  109622002023-10-12  3.54 3.560 3.410   3.47  132169002023-10-13  3.44 3.460 3.360   3.42  254741002023-10-16  3.40 3.460 3.370   3.42  228835002023-10-17  3.39 3.460 3.380   3.43  119978002023-10-18  3.40 3.450 3.320   3.33  105019002023-10-19  3.29 3.330 3.260   3.30  14663405*********************************************************

按照分析师的计划,聊天管理器将股票价格数据提供给UI设计师,UI设计师随后使用AmCharts为图表创建代码,并随后向聊天管理器报告。

 uidesigner (to chat_manager):Here is the complete code for the stock chart using the Amcharts library. The code includes the actual data for the last 30 days of the GRAB stock price.```html<!DOCTYPE html><html><head><title>AmCharts Stock Chart</title><script src="https://www.amcharts.com/lib/3/amcharts.js"></script><script src="https://www.amcharts.com/lib/3/serial.js"></script><script src="https://www.amcharts.com/lib/3/amstock.js"></script><script src="https://www.amcharts.com/lib/3/themes/light.js"></script></head><body><div id="chartdiv" style="width: 100%; height: 500px;"></div><script>var chartData = [{ "date": new Date(2023, 8, 20), "open": 3.50, "high": 3.545, "low": 3.410, "close": 3.46, "volume": 13639700 },{ "date": new Date(2023, 8, 21), "open": 3.45, "high": 3.460, "low": 3.380, "close": 3.46, "volume": 13781400 },{ "date": new Date(2023, 8, 22), "open": 3.48, "high": 3.510, "low": 3.425, "close": 3.43, "volume": 8708200 },{ "date": new Date(2023, 8, 25), "open": 3.43, "high": 3.470, "low": 3.385, "close": 3.43, "volume": 10990000 },{ "date": new Date(2023, 8, 26), "open": 3.38, "high": 3.450, "low": 3.360, "close": 3.40, "volume": 11458800 },{ "date": new Date(2023, 8, 27), "open": 3.40, "high": 3.460, "low": 3.360, "close": 3.38, "volume": 20921100 },{ "date": new Date(2023, 8, 28), "open": 3.38, "high": 3.490, "low": 3.360, "close": 3.47, "volume": 14482300 },{ "date": new Date(2023, 8, 29), "open": 3.52, "high": 3.590, "low": 3.520, "close": 3.54, "volume": 15580200 },{ "date": new Date(2023, 9, 2), "open": 3.49, "high": 3.570, "low": 3.460, "close": 3.48, "volume": 19845600 },{ "date": new Date(2023, 9, 3), "open": 3.48, "high": 3.480, "low": 3.330, "close": 3.35, "volume": 27370300 },{ "date": new Date(2023, 9, 4), "open": 3.32, "high": 3.410, "low": 3.230, "close": 3.40, "volume": 18224300 },{ "date": new Date(2023, 9, 5), "open": 3.37, "high": 3.500, "low": 3.370, "close": 3.48, "volume": 16904000 },{ "date": new Date(2023, 9, 6), "open": 3.45, "high": 3.520, "low": 3.445, "close": 3.50, "volume": 9386900 },{ "date": new Date(2023, 9, 9), "open": 3.47, "high": 3.480, "low": 3.380, "close": 3.44, "volume": 13512600 },{ "date": new Date(2023, 9, 10), "open": 3.51, "high": 3.570, "low": 3.500, "close": 3.53, "volume": 11492700 },{ "date": new Date(2023, 9, 11), "open": 3.51, "high": 3.550, "low": 3.480, "close": 3.49, "volume": 10962200 },{ "date": new Date(2023, 9, 12), "open": 3.54, "high": 3.560, "low": 3.410, "close": 3.47, "volume": 13216900 },{ "date": new Date(2023, 9, 13), "open": 3.44, "high": 3.460, "low": 3.360, "close": 3.42, "volume": 25474100 },{ "date": new Date(2023, 9, 16), "open": 3.40, "high": 3.460, "low": 3.370, "close": 3.42, "volume": 22883500 },{ "date": new Date(2023, 9, 17), "open": 3.39, "high": 3.460, "low": 3.380, "close": 3.43, "volume": 11997800 },{ "date": new Date(2023, 9, 18), "open": 3.40, "high": 3.450, "low": 3.320, "close": 3.33, "volume": 10501900 },{ "date": new Date(2023, 9, 19), "open": 3.29, "high": 3.330, "low": 3.260, "close": 3.30, "volume": 14663405 }];var chart = AmCharts.makeChart("chartdiv", {"type": "stock","theme": "light","dataSets": [{"fieldMappings": [{"fromField": "open","toField": "open"}, {"fromField": "high","toField": "high"}, {"fromField": "low","toField": "low"}, {"fromField": "close","toField": "close"}, {"fromField": "volume","toField": "volume"}],"dataProvider": chartData,"categoryField": "date"}],"panels": [{"showCategoryAxis": false,"title": "Value","percentHeight": 70,"stockGraphs": [{"id": "g1","valueField": "close","comparable": true,"compareField": "close","balloonText": "[[title]]:<b>[[value]]</b>","compareGraphBalloonText": "[[title]]:<b>[[value]]</b>"}],"stockLegend": {"periodValueTextComparing": "[[percents.value.close]]%","periodValueTextRegular": "[[value.close]]"}}, {"title": "Volume","percentHeight": 30,"stockGraphs": [{"valueField": "volume","type": "column","showBalloon": false,"fillAlphas": 1}],"stockLegend": {"periodValueTextRegular": "[[value.close]]"}}],"chartScrollbarSettings": {"graph": "g1"},"chartCursorSettings": {"valueBalloonsEnabled": true,"fullWidth": true,"cursorAlpha": 0.1,"valueLineBalloonEnabled": true,"valueLineEnabled": true,"valueLineAlpha": 0.5},"periodSelector": {"position": "left","periods": [{"period": "MM","selected": true,"count": 1,"label": "1 month"}, {"period": "YYYY","count": 1,"label": "1 year"}, {"period": "YTD","label": "YTD"}, {"period": "MAX","label": "MAX"}]},"dataSetSelector": {"position": "left"},"export": {"enabled": true}});</script></body></html>

This code will generate a stock chart for the GRAB stock price for the last 30 days. The chart includes open, high, low, close prices, and volume. The chart also includes a period selector and a data set selector.


因为这个过程不需要任何的人工干预,所以管理员admin没有任何的输入

admin (to chat_manager):



最后分析师提供对股票价格的分析,并与Admin共享反馈,以及生成的图表代码,发送TERMINATE消息以结束对话。

analyst (to chat_manager):

The stock price data for GRAB over the last 30 days shows a slight decrease in the closing price from 3.46 to 3.30. The highest closing price in this period was 3.54, and the lowest was 3.30. The volume of stocks traded also varied significantly, with the highest volume being 27,370,300 and the lowest being 8,708,200.

The chart created by the UI designer will provide a visual representation of these trends, making it easier to understand the stock’s performance over the last month.

TERMINATE


上面就是AutoGen工作的一个完整的流程## 总结我们用AutoGen创建了多个代理。这些代理协作分析股票价格并使用AmCharts生成图表。软件工程师根据分析师的要求检索股票价格信息。设计师拿到股票价格数据、创建图表。而分析师则可以进行分析。AutoGen的AssistantAgents,促进了代理交互和代码执行,以对话的方式执行复杂的任务。[https://avoid.overfit.cn/post/2a2396c634a04041b1c0ffe6cf047ed1](https://avoid.overfit.cn/post/2a2396c634a04041b1c0ffe6cf047ed1)

这篇关于AutoGen多代理对话项目示例和工作流程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/502160

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP