TrustGeo代码理解(七)preprocess.py

2023-12-16 19:52

本文主要是介绍TrustGeo代码理解(七)preprocess.py,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码链接:https://github.com/ICDM-UESTC/TrustGeo

一、导入各种模块和数据库

# Load data and IP clusteringimport math
import random
import pandas as pd
import numpy as np
import argparse
from sklearn import preprocessing
from lib.utils import MaxMinScaler

加载数据和IP聚类,这些导入语句是为了引入在后续代码中可能会使用到的数学、随机数、数据处理等工具和库。

1、import math:导入 Python 的 math 模块,该模块提供了数学运算的函数。

2、import random:导入 Python 的 random 模块,该模块提供了生成伪随机数的函数。

3、import pandas as pd:导入 pandas 库,并将其简写为 pd,用于处理和分析数据。

4、import numpy as np:导入 numpy 库,并将其简写为 np,用于支持大量的维度数组和矩阵运算。

5、import argparse:导入 argparse 模块,用于解析命令行参数。

6、from sklearn import preprocessingsklearn 库导入数据预处理模块 preprocessing,用于数据预处理。

7、from lib.utils import MaxMinScaler:从自定义的 lib.utils 模块中导入 MaxMinScaler 类。这可能是一个用于最大-最小归一化的工具类。

二、使用argparse库创建了一个命令行解析器

parser = argparse.ArgumentParser()parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],help='which dataset to use')
parser.add_argument('--train_test_ratio', type=float, default=0.8, help='landmark ratio')
parser.add_argument('--lm_ratio', type=float, default=0.7, help='landmark ratio')
parser.add_argument('--seed', type=int, default=1234)opt = parser.parse_args()

这部分代码的功能是通过命令行输入来配置脚本的行为。用户可以在运行脚本时通过命令行参数指定数据集名称、训练集测试集比例、地标比例以及随机数生成的种子等参数。解析后,这些参数将在脚本中被引用,从而影响程序的行为。

1、parser = argparse.ArgumentParser():创建一个ArgumentParser对象,用于解析命令行参数。

2、parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],help='which dataset to use'): 添加命令行参数。

3、parser.add_argument('--train_test_ratio', type=float, default=0.8, help='landmark ratio'):用于指定训练集和测试集的比例,默认值是 0.8

4、parser.add_argument('--lm_ratio', type=float, default=0.7, help='landmark ratio'):用于指定地标的比例,默认值是 0.7

5、parser.add_argument('--seed', type=int, default=1234): 用于指定随机数生成的种子,默认值是 1234

6、opt = parser.parse_args():解析命令行参数,并将解析结果存储在 opt 对象中。opt 对象将包含命令行传入的各个参数的值。

三、get_XY()

def get_XY(dataset):data_path = "./datasets/{}/data.csv".format(dataset)ip_path = './datasets/{}/ip.csv'.format(dataset)trace_path = './datasets/{}/last_traceroute.csv'.format(dataset)data_origin = pd.read_csv(data_path, encoding='gbk', low_memory=False)ip_origin = pd.read_csv(ip_path, encoding='gbk', low_memory=False)trace_origin = pd.read_csv(trace_path, encoding='gbk', low_memory=False)data = pd.concat([data_origin, ip_origin, trace_origin], axis=1)data.fillna({"isp": '0'}, inplace=True)# labelsY = data[['longitude', 'latitude']]Y = np.array(Y)# featuresif dataset == "Shanghai":  # Shanghai# classification featuresX_class = data[['orgname', 'asname', 'address', 'isp']]scaler = preprocessing.OneHotEncoder(sparse=False)X_class = scaler.fit_transform(X_class)X_class1 = data['isp']X_class1 = preprocessing.LabelEncoder().fit_transform(X_class1)X_class1 = preprocessing.MinMaxScaler().fit_transform(np.array(X_class1).reshape((-1, 1)))X_2 = data[['ip_split1', 'ip_split2', 'ip_split3', 'ip_split4']]X_2 = preprocessing.MinMaxScaler().fit_transform(np.array(X_2))X_3 = data[['aiwen_ping_delay_time', 'vp806_ping_delay_time', 'vp808_ping_delay_time', 'vp813_ping_delay_time']]delay_scaler = MaxMinScaler()delay_scaler.fit(X_3)X_3 = delay_scaler.transform(X_3)X_4 = data[['aiwen_tr_steps', 'vp806_tr_steps', 'vp808_tr_steps', 'vp813_tr_steps']]step_scaler = MaxMinScaler()step_scaler.fit(X_4)X_4 = step_scaler.transform(X_4)X_5 = data['asnumber']X_5 = preprocessing.LabelEncoder().fit_transform(X_5)X_5 = preprocessing.MinMaxScaler().fit_transform(np.array(X_5).reshape(-1, 1))X_6 = data[['aiwen_last1_delay', 'aiwen_last2_delay_total', 'aiwen_last3_delay_total', 'aiwen_last4_delay_total','vp806_last1_delay', 'vp806_last2_delay_total', 'vp806_last3_delay_total', 'vp806_last4_delay_total','vp808_last1_delay', 'vp808_last2_delay_total', 'vp808_last3_delay_total', 'vp808_last4_delay_total','vp813_last1_delay', 'vp813_last2_delay_total', 'vp813_last3_delay_total', 'vp813_last4_delay_total']]X_6 = np.array(X_6)X_6[X_6 <= 0] = 0X_6 = preprocessing.MinMaxScaler().fit_transform(X_6)X = np.concatenate([X_class1, X_class, X_2, X_3, X_4, X_5, X_6], axis=1) # dimension =51elif dataset == "New_York" or "Los_Angeles":  # New_York or Los_AngelesX_class = data['isp']X_class = preprocessing.LabelEncoder().fit_transform(X_class)X_class = preprocessing.MinMaxScaler().fit_transform(np.array(X_class).reshape((-1, 1)))X_2 = data[['ip_split1', 'ip_split2', 'ip_split3', 'ip_split4']]X_2 = preprocessing.MinMaxScaler().fit_transform(np.array(X_2))X_3 = data['as_mult_info']X_3 = preprocessing.LabelEncoder().fit_transform(X_3)X_3 = preprocessing.MinMaxScaler().fit_transform(np.array(X_3).reshape(-1, 1))X_4 = data[['vp900_ping_delay_time', 'vp901_ping_delay_time', 'vp902_ping_delay_time', 'vp903_ping_delay_time']]delay_scaler = MaxMinScaler()delay_scaler.fit(X_4)X_4 = delay_scaler.transform(X_4)X_5 = data[['vp900_tr_steps', 'vp901_tr_steps', 'vp902_tr_steps', 'vp903_tr_steps']]step_scaler = MaxMinScaler()step_scaler.fit(X_5)X_5 = step_scaler.transform(X_5)X_6 = data[['vp900_last1_delay', 'vp900_last2_delay_total', 'vp900_last3_delay_total', 'vp900_last4_delay_total','vp901_last1_delay', 'vp901_last2_delay_total', 'vp901_last3_delay_total', 'vp901_last4_delay_total','vp902_last1_delay', 'vp902_last2_delay_total', 'vp902_last3_delay_total', 'vp902_last4_delay_total','vp903_last1_delay', 'vp903_last2_delay_total', 'vp903_last3_delay_total', 'vp903_last4_delay_total']]X_6 = np.array(X_6)X_6[X_6 <= 0] = 0X_6 = preprocessing.MinMaxScaler().fit_transform(X_6)X = np.concatenate([X_2, X_class, X_3, X_4, X_5, X_6], axis=1) # dimension =30return X, Y, np.array(trace_origin)

这个函数用于从指定数据集加载并预处理数据,返回用于训练的特征 (X)、标签 (Y) 以及原始的跟踪数据 (trace_origin)。

分为几个部分展开描述:

(一)加载数据并处理

data_path = "./datasets/{}/data.csv".format(dataset)
ip_path = './datasets/{}/ip.csv'.format(dataset)
trace_path = './datasets/{}/last_traceroute.csv'.format(dataset)data_origin = pd.read_csv(data_path, encoding='gbk', low_memory=False)
ip_origin = pd.read_csv(ip_path, encoding='gbk', low_memory=False)
trace_origin = pd.read_csv(trace_path, encoding='gbk', low_memory=False)data = pd.concat([data_origin, ip_origin, trace_origin], axis=1)
data.fillna({"isp": '0'}, inplace=True)

这部分代码主要是从三个文件(data.csvip.csvlast_traceroute.csv)中加载数据,进行合并和预处理。

1、data_path = "./datasets/{}/data.csv".format(dataset):构建包含数据文件路径的字符串,其中 {} 是一个占位符,将被 format(dataset) 中的 dataset 变量替代。

2、ip_path = './datasets/{}/ip.csv'.format(dataset):构建包含 IP 地址文件路径的字符串。

3、trace_path = './datasets/{}/last_traceroute.csv'.format(dataset):构建包含最后一次路由跟踪文件路径的字符串。

4、data_origin = pd.read_csv(data_path, encoding='gbk', low_memory=False):使用 Pandas 库的 read_csv 函数从 data.csv 文件中读取数据。参数 encoding='gbk' 表示使用 gbk 编码读取文件,low_memory=False 表示禁用内存优化,以确保能够处理大型文件。

5、ip_origin = pd.read_csv(ip_path, encoding='gbk', low_memory=False):从 ip.csv 文件中读取 IP 地址相关的数据。

6、trace_origin = pd.read_csv(trace_path, encoding='gbk', low_memory=False):从 last_traceroute.csv 文件中读取最后一次路由跟踪的数据。

7、data = pd.concat([data_origin, ip_origin, trace_origin], axis=1):将三个数据框按列(axis=1)进行拼接,形成一个包含所有信息的新数据框 data

8、data.fillna({"isp": '0'}, inplace=True):使用字符串 '0' 填充数据框中的缺失值,特别是 isp 列的缺失值。inplace=True 表示在原地修改数据框而不返回新的数据框。这个步骤主要是为了处理缺失值,将缺失的 isp 列中的值替换为 '0'。

(二)处理数据中的标签(labels)

# labels
Y = data[['longitude', 'latitude']]
Y = np.array(Y)

这部分代码的整体功能是从数据中提取经度和纬度两列,将它们存储在 NumPy 数组 Y 中,

这篇关于TrustGeo代码理解(七)preprocess.py的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501691

相关文章

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

Java 压缩包解压实现代码

《Java压缩包解压实现代码》Java标准库(JavaSE)提供了对ZIP格式的原生支持,通过java.util.zip包中的类来实现压缩和解压功能,本文将重点介绍如何使用Java来解压ZIP或RA... 目录一、解压压缩包1.zip解压代码实现:2.rar解压代码实现:3.调用解压方法:二、注意事项三、总

Linux实现简易版Shell的代码详解

《Linux实现简易版Shell的代码详解》本篇文章,我们将一起踏上一段有趣的旅程,仿照CentOS–Bash的工作流程,实现一个功能虽然简单,但足以让你深刻理解Shell工作原理的迷你Sh... 目录一、程序流程分析二、代码实现1. 打印命令行提示符2. 获取用户输入的命令行3. 命令行解析4. 执行命令

SQL Server身份验证模式步骤和示例代码

《SQLServer身份验证模式步骤和示例代码》SQLServer是一个广泛使用的关系数据库管理系统,通常使用两种身份验证模式:Windows身份验证和SQLServer身份验证,本文将详细介绍身份... 目录身份验证方式的概念更改身份验证方式的步骤方法一:使用SQL Server Management S

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

QT6中绘制UI的两种方法详解与示例代码

《QT6中绘制UI的两种方法详解与示例代码》Qt6提供了两种主要的UI绘制技术:​​QML(QtMeta-ObjectLanguage)​​和​​C++Widgets​​,这两种技术各有优势,适用于不... 目录一、QML 技术详解1.1 QML 简介1.2 QML 的核心概念1.3 QML 示例:简单按钮

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代