正则化实战( Lasso 套索回归,Ridge 岭回归)

2023-12-16 19:04

本文主要是介绍正则化实战( Lasso 套索回归,Ridge 岭回归),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Lasso 套索回归

导入包

import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor, LinearRegression

原方程的计算结果

# 1. 创建数据集X,y
X = 2 * np.random.rand(100, 20)
w = np.random.rand(20, 1)
b = np.random.randint(1, 10, size=1)
y = X.dot(w) +b + np.random.randn(100,1)
print('原始方程的斜率:',w,b)
print('原始方程的截距',b)

在这里插入图片描述

普通线性回归方式

# 线性回贵
linear = LinearRegression()
linear.fit(X,y)
print('普通线性回归系数\n',linear.coef_)
print('线性回归截距是:',linear.intercept_)

在这里插入图片描述

Lasso 套索回归

# l1 正则化的lasso回归一部分权重变为0
# 其余的进行了衰减     可以说模型的负责度降低,可以减少过拟合
lasso = Lasso(alpha=0.1)
lasso.fit(X,y)
print('l1 正则化系数:\n',lasso.coef_)
print('l1 正则化截距',lasso.intercept_)

在这里插入图片描述

随机的梯度下降

sgd = SGDRegressor(penalty='l1',alpha=0.1)
sgd.fit(X,y.ravel())
print('随机梯度下降系数',sgd.coef_)
print('随机梯度截距',sgd.intercept_)

在这里插入图片描述

  • 和没有正则项约束线性回归对比,可知L1正则化,将方程系数进行了缩减,部分系数为0,产生稀疏模型
  • α \alpha α 越大,模型稀疏性越强,越多的参数为0
  • Lasso回归源码解析:
  • alpha:正则项系数
  • fit_intercept:是否计算 w 0 w_0 w0 截距项
  • normalize:是否做归一化
  • precompute:bool 类型,默认值为False,决定是否提前计算Gram矩阵来加速计算
  • max_iter:最大迭代次数
  • tol:结果的精确度
  • warm_start:bool类型,默认值为False。如果为True,那么使⽤用前⼀次训练结果继续训练。否则从头开始训练

Ridge 岭回归

导入包

import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import LinearRegression 

原方程的计算结果


# 创建模拟数据
X = 2 * np.random.rand(100,5)
w = np.random.randint(1,10,size=(5,1))
b = np.random.randint(1,10,size=1)
y = X.dot(w) + b + np.random.randn(100,1)print('原始方程的斜率:',w.ravel())
print('原始方程的截距',b)

在这里插入图片描述

普通的线性回归

linear = LinearRegression()
linear.fit(X,y)
print('普通的线性回归系数',linear.coef_,linear.intercept_)**

在这里插入图片描述

Ridge 岭回归

ridge = Ridge(alpha=0.12)
ridge.fit(X,y)
print('l2 正则化ridge系数数:',ridge.coef_,ridge.intercept_)

在这里插入图片描述

结论:

  • 和没有正则项约束线性回归对比,可知L2正则化,将方程系数进行了缩小
  • α \alpha α 增大求解出来的方程斜率变小
  • Ridge回归源码解析:
  • alpha:正则项系数
  • fit_intercept:是否计算 w 0 w_0 w0 截距项
  • normalize:是否做归一化
  • max_iter:最大迭代次数
  • tol:结果的精确度
  • solver:优化算法的选择

坚持学习,整理复盘
结尾

这篇关于正则化实战( Lasso 套索回归,Ridge 岭回归)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501561

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr